
ScanaStudio Scripting programmer’s
manual

Script API version: 3.0

Ibrahim KAMAL

November 7, 2019

Introduction to ScanaStudio scripts

Contents

Introduction to ScanaStudio scripts 6
A bit of history . 6
Scope of this document . 6
What can a ScanaStudio script do? . 7
Principle of operation . 7
Setting up coding environment . 8

Architecture of a script 10
Meta-information . 10
Entry points functions . 11
Anatomy of a simple script . 13
Building the GUI . 14
Decoding the signals . 15
Putting the finishing touches . 17

GUI related functions 18
GUI entry-point functions . 18
GUI construction . 19

ScanaStudio.gui_add_ch_selector(“id”,“caption”,“new_channel_name”) 20
ScanaStudio.gui_add_text_input(“id”,“caption”,“default_value”) 20
ScanaStudio.gui_add_baud_selector(“id”,“caption”,default_value) 20
ScanaStudio.gui_add_check_box(“id”,“caption”,is_checked) 21
ScanaStudio.gui_add_combo_box(“id”,“caption”) . 21
ScanaStudio.gui_add_item_to_combo_box(“item_txt”,is_selected) 22
ScanaStudio.gui_add_engineering_form_input_box(“id”, “caption”, min_value,

max_value, default_value, “unit”) . 22
ScanaStudio.gui_add_info_label(“text”) . 23
ScanaStudio.gui_add_separator(“title”) . 23

File system GUI elements . 24
ScanaStudio.gui_add_file_save(“id”,“caption”,“extension”) 24
ScanaStudio.gui_add_file_load(“id”,“caption”,“extension”) 24

Hidden GUI elements . 24
ScanaStudio.gui_add_hidden_field(“id”,“value”) . 25
ScanaStudio.gui_set_hidden_field(“id”,“value”) . 25

Grouping GUI elements in tabs . 26
ScanaStudio.gui_add_new_tab(“caption”,is_expanded) 26
ScanaStudio.gui_end_tab() . 27

(c) Ikalogic SAS 2019 2

Introduction to ScanaStudio scripts

Selectable containers . 28
ScanaStudio.gui_add_new_selectable_containers_group(“id”,“caption”) 30
ScanaStudio.gui_end_selectable_containers_group() 31
ScanaStudio.gui_add_new_container(“caption”,is_selected) 31
ScanaStudio.gui_end_container() . 31

GUI evaluation and validation . 31
GUI data retrieval . 33

ScanaStudio.gui_get_value(“id”) . 33
Complete example . 34

Protocol decoding 37
Logic signals decoding entry-point function . 37
More about logic signals in ScanaStudio . 38
Samples, time, and sampling rate . 39

ScanaStudio.get_capture_sample_rate() . 40
Browsing through logic signals . 40

ScanaStudio.trs_reset(channel_index) . 40
ScanaStudio.trs_get_before(channel_index,target_sample) 40
ScanaStudio.trs_get_next(channel_index) . 41
ScanaStudio.trs_get_previous(channel_index) . 41
ScanaStudio.trs_is_not_last(channel_index) . 41
get_available_samples(channel_index) . 41

Using the bit sampler feature . 42
ScanaStudio.bit_sampler_init(channel_index,start_sample_index,samples_increment) 42
ScanaStudio.bit_sampler_next(channel_index) . 43

Adding decoder items . 43
ScanaStudio.dec_item_new(channel_index,start_sample,end_sample); 45
ScanaStudio.dec_item_add_content(“content”); . 45
ScanaStudio.dec_item_add_sample_point(sample_index,“drawing”); 46
ScanaStudio.dec_item_emphasize_error() . 47
ScanaStudio.dec_item_emphasize_warning() . 47
ScanaStudio.dec_item_emphasize_success() . 47
ScanaStudio.dec_item_end() . 47

Packet view . 47
ScanaStudio.packet_view_add_packet(root, ch, start_sample, end_sample, “title”,

“content”, “title_bg_html_color”, “content_bg_html_color”) 48
Hex View . 50

ScanaStudio.hex_view_add_byte(channel_index,start_sample,end_sample,data_byte) 50

(c) Ikalogic SAS 2019 3

Introduction to ScanaStudio scripts

Colors . 51
ScanaStudio.get_channel_color(channel_index) . 51

Sub-decoder scripts 53
ScanaStudio.pre_decode(“dec_name”,resume) . 55
ScanaStudio.is_pre_decoding() . 56

Implementing a sub-decoder in your decoder . 56

Trigger sequences (FlexiTrig) 58
Consecutive edges of the same polarity . 59
Entry point function . 61

ScanaStudio.flexitrig_append(“step_description”,t_min,t_max) 61
ScanaStudio.flexitrig_print_steps() . 61

Example trigger sequence generator script . 61

Signal builder 65
Entry point functions . 65
Sampling rate and device memory . 66

ScanaStudio.builder_get_sample_rate() . 66
ScanaStudio.builder_get_maximum_samples_count() 66
ScanaStudio.builder_get_samples_acc(channel_index) 66

Basic signal builder functions . 67
ScanaStudio.builder_add_samples(channel_index,logic_level,samples_count) 67
ScanaStudio.builder_add_cycles(channel_index,duty_cycle,samples_per_cycle,cycles_count) 67

Implementing a builder object . 68
Using a builder object from another script . 69
Putting it all together . 69

File system functions 72
ScanaStudio.file_system_open(“file_id”,“mode”); . 72
ScanaStudio.file_system_close(file_handle) . 73
ScanaStudio.file_system_read_binary(file_handle) 73
ScanaStudio.file_system_read_text(file_handle,“encoding”) 73
ScanaStudio.file_system_write_binary(file_handle,data_array) 75
ScanaStudio.file_system_write_text(file_handle, “text”, “encoding”) 75

Full example . 76

(c) Ikalogic SAS 2019 4

Introduction to ScanaStudio scripts

General functions 79
Script renaming . 79

ScanaStudio.set_script_instance_name(“script_name”) 79
Progress reporting . 79

ScanaStudio.report_progress(progress_percentage) 79
Console messages . 80

ScanaStudio.console_info_msg(“msg”,sample) . 80
ScanaStudio.console_warning_msg(“msg”,sample) 81
ScanaStudio.console_error_msg(“msg”,sample) . 81

Formatting . 81
ScanaStudio.engineering_notation(number,digits) 81

Protocol decoder scriptingmethodology 82

(c) Ikalogic SAS 2019 5

Introduction to ScanaStudio scripts

Introduction to ScanaStudio scripts

ScanaStudio scripts are JavaScript (*.js) files that are executed by ScanaStudio. Those scripts have
access to the signals captured by logic analyzer devices, and can output data in variousways depending
on the task the script has to accomplish. There are various kind of script, the most common type is a
protocol decoder script, that is, a script that will decode (interpret) logic signals according to a standard
protocol (like I2C, Serial UART, CAN, Etc. . .). There are also scripts that will allow a logic analyzer device
to trigger on a specific word of a protocol, and finally, there are scripts that can build some logic
patterns (like a PWM pattern) that can be later generated by devices that support signal generation.

Note: This document is oriented to users with someminimal skills, you are one of those users if:

• You have programmed in any language before, and preferably have some JavaScript background
• You have someminimal experience with logic signals and digital electronics
• You are familiar with one or more serial protocols (like I2C, UART or CAN bus, to name only a few
examples)

If you feel you’re lacking some of the skills mentioned above, it’s probably not a good idea to start
writing scripts until you gain more knowledge about digital electronics and programming.

A bit of history

In 2019, Ikalogic has introduced a new version of ScanaStudio (Logic Analyzer so�ware). With this
new version, the scripting systemwas totally rebuilt from the ground up to enhance its operation and
broaden the scope of the scripts. It’s also worth noting that the previous script system was initially
designed in 2015 only to decode signals. Over the years, features and options were gradually added to
the scripting system, and it came to a point where it was totally non-harmonized and barely usable
for someone outside Ikalogic organization. This new version of ScanaStudio script API addresses this
problem. It’s designed to be intuitive, future-evolutions ready, easy to appropriate and fast to execute.

Scope of this document

ScanaStudio scripting language is based on JavaScript. This document will not cover the JavaScript
basics that someone need to have to write or modify ScanaStudio scripts. Excellent tutorials exist on
the internet for that purpose. This document will however cover all the details related to the specifics
of writing scripts for ScanaStudio. Example source codes will be provided as o�en as necessary, so if
you’re not a JavaScript expert but have general programming knowledge, you should be able to follow
fairly easily.

Important note: This documentation covers ScanaStudio V3.1 and beyond. Earlier versions are not
covered by this documentation as it is considered too di�erent to be merged in a single document.

(c) Ikalogic SAS 2019 6

http://www.ecma-international.org/publications/standards/Ecma-262.htm

Introduction to ScanaStudio scripts

Older scripts repository can be found here.

What can a ScanaStudio script do?

We’re constantly opening up new parts of ScanaStudio to be “scriptable”. At the moment this docu-
mentation is written, the following main features are implemented:

• Decode logic signals according to a specific protocol (this include building packet-view and
hex-view).

• Build logic patterns to be generated with devices that have this capability.
• Build demo signals for a particular protocol (arbitrary signals that are generated when no device
is connected to the so�ware)

• Generate trigger sequence (e.g. trigger on a specific I2C address).

More features are planned, so check back later and/or don’t hesitate to share the list of features you
think script should be able to handle.

Principle of operation

As stated before, ScanaStudio scripts are based on standard JavaScript. There are two ways ScanaStu-
dio and user script need to interact with each others:

Interaction initiated by ScanaStudio ScanaStudio needs to call one ormore special functions (called
entry-point functions herea�er) to start an operation. For example, if a script needs to be used to decode
signals it must at least implement a function called on_decode_signals(resume), something like
this:

1 function on_decode_signals(resume)
2 {
3 /*
4 Write here the code that will interpret the logic signals
5 resume is == true if decoder should resume where it left
6 */
7 }

This functionwill be calledbyScanaStudiowhen logic signals need tobedecoded. Fromaprogramming
point of view, entry point functions can be treated as events handlers.

Interaction initiated by the script The script needs to retrieve information from ScanaStudio, as well
as call various functions in ScanaStudio so�ware. An object called ScanaStudio is exposed in the

(c) Ikalogic SAS 2019 7

https://github.com/ikalogic/ScanaStudio-Decoders
http://www.ecma-international.org/publications/standards/Ecma-262.htm

Introduction to ScanaStudio scripts

script context as a global object, and can be used for all the interactions with ScanaStudio that are
initiated by the script. For example, a protocol decoder script can get the sampling rate for the last
captured samples via this function call:

ScanaStudio.get_capture_sample_rate()

In the samemanner, the script can output some console messages via this function:

ScanaStudio.console_info_msg("Hello world from the script!").

Below is a more complete example:

1 function on_decode_signals(resume)
2 {
3 ScanaStudio.console_info_msg(
4 "The sample rate is:" +
5 ScanaStudio.get_capture_sample_rate() + " Hz");
6 }

Obviously, the example above is completely useless in terms of “signal decoding”, it’s just here to
illustrate the way the standard JavaScript is enhanced with the ScanaStudio global object.

Setting up coding environment

This section presents the coding and debugging environment as used by Ikalogic engineers. Those are
only recommendations. You’re free to use our tools andmethodology and/or inspire from this setup as
needed.

To edit the script (or write new ones) we recommend using Atom text editor. It’s a free and open source
editor that is perfectly adapted to coding and scripting. Also, Ikalogic provides an Atomplugin that adds
text snippets. A�er downloading and installing Atom to your computer, you can install ScanaStudio
plugin by following those steps:

1. In Atom, go to File > Settings
2. Select “+Install” from the le� vertical menu
3. Search for a package names “ScanaStudio-snippets” and install it.
4. Close and restart Atom.

Once the ScanaStudio-snippets package is installed, you will see snippet widgets appear as you type
to help you finding the right syntax.

(c) Ikalogic SAS 2019 8

https://atom.io/

Introduction to ScanaStudio scripts

Figure 1: atom-snippet-example

Some snippets can generatewhole blocs of code - a template - like the meta-info-template snippet:

Figure 2: meta-info-snipped

Which will generate this code block:

1 /* Protocol meta info:
2 <PROTOCOL_NAME> My Protocol </PROTOCOL_NAME>
3 <DESCRIPTION>
4 My protocol can decode the s%^* out of any logic signal!
5 </DESCRIPTION>
6 <VERSION> 0.0 </VERSION>
7 <AUTHOR_NAME> Your name </AUTHOR_NAME>
8 <AUTHOR_URL> your@email.or.website </AUTHOR_URL>
9 <COPYRIGHT> Copyright 2018 your name </COPYRIGHT>
10 <LICENSE> This code is distributed under the terms of the GNU General

Public License GPLv3 </LICENSE>
11 <RELEASE_NOTES>
12 V0.0: Initial release.
13 </RELEASE_NOTES>
14 */

Hint: Start typing the word “template” and Atomwill show a list of all available template snippets that
can help you easily get started with the writing of a script.

(c) Ikalogic SAS 2019 9

Introduction to ScanaStudio scripts

Architecture of a script

This chapter will give you a more exhaustive view of the base construction blocks of a script. It will
address the di�erent kind of interactions that can take place between your script and ScanaStudio
so�ware.

A script is composed of three main parts:

• Meta-information
• One or more entry point functions
• User code, that is, all the rest of your script.

Any script must contain somemeta-information, which is some text that describes what your script
does, what’s its version or who is the author. Think of the Meta-information as the ID card of your script.

A script must also contain at least one entry point function. Entry point functions are called by ScanaS-
tudio when it’s time for your script to execute the task it was made for.

Both meta-information and entry point functions will be discussed in details in the following sections.

Meta-information

As stated above, meta-information is like an ID card of your script. It can be placed anywhere in the
script, but for the sake of harmonization, we recommend that you place it at the very top of your
script. Meta-information is composed of a commented bloc of code, containing meta tags. Each tag
encapsulates a specific information as shown in the example below:

1 /*
2 <NAME> My script name </NAME>
3 <DESCRIPTION>
4 Description of my script. It can decode my custom protocol,
5 and it can generate trigger sequences for that specific protocol.
6 </DESCRIPTION>
7 <VERSION> 1.1.2 </VERSION>
8 <AUTHOR_NAME> My name </AUTHOR_NAME>
9 <AUTHOR_URL> my_website_or_email.com </AUTHOR_URL>
10 <HELP_URL> link to a documentation for your script, e.g.:
11 https://github.com/ikalogic/ScanaStudio-scripts-v3/wiki/SPI-script-

documentation </HELP_URL>
12 <COPYRIGHT> Copyright 2018 Myself or my company </COPYRIGHT>
13 <LICENSE> This code is distributed under the terms of the
14 GNU General Public License GPLv3 </LICENSE>

(c) Ikalogic SAS 2019 10

Introduction to ScanaStudio scripts

15 <RELEASE_NOTES>
16 V1.1.2: Fixed anther bug.
17 V1.1.1: Fixed some bug.
18 V1.1.0: Added some feature.
19 V1.0.0: Initial release.
20 </RELEASE_NOTES>
21 */

As youmay have noticed, this is inspired from thewayHTMLor XML tagswork. It’s highly recommended
that each script implements this full list of meta-info tags. This will allow ScanaStudio to provide
consistent and harmonized information to the user of your script.

Entry points functions

Each and every script (that is to be supported by ScanaStudio) need entry point functions to operate.
These are called by ScanaStudio when a specific function is to be carried by your script.

A summary of the entry point functions is listed in the following table:

Function Script Context Description

on_decode_signals() Protocol
decoder

Called when ScanaStudio needs to decode
captured signals.

on_draw_gui_decoder() Protocol
decoder

Called when ScanaStudio needs to show protocol
decoder configuration GUI.

on_eval_gui_decoder() Protocol
decoder

Called when ScanaStudio needs to evaluate if the
decoder GUI configuration is valid

on_build_trigger() Trigger Called when ScanaStudio need to generate a
trigger sequence.

on_draw_gui_trigger() Trigger Called when ScanaStudio needs to show the
trigger GUI

on_eval_gui_trigger() Trigger Called when ScanaStudio needs to evaluate if the
Trigger GUI configuration is valid.

on_build_signals() Signal builder Called when the user requests signals to be built.

on_build_demo_signals() Signal builder Called when the user tries to run a workspace that
has your script without any device connected.

on_draw_gui_signal_builder() Signal builder Called when ScanaStudio needs to show the
signal builder GUI

(c) Ikalogic SAS 2019 11

Introduction to ScanaStudio scripts

Function Script Context Description

on_eval_gui_signal_builder() Signal builder Called when ScanaStudio needs to evaluate if the
signal builder GUI configuration is valid.

Note: Each and every one of those functions will be discussed in details in dedicated sections of this
document.

Not all of those entry point functions need to be implemented in your script. It all depends on what
features you want your script to have. ScanaStudio will parse your script searching for those “special
functions”, and will automatically detect which features are supported by your script.

Obviously, those entry point function’s names are reserved only for this purpose. You should never use
the names of those functions as regular user function. Also, you should never call entry point functions
fromwithin the script as this can lead to unexpected behavior.

Youmay notice theword “Script context” wasmentioned in the table above. The Script context simply
defines what your script is allowed to do when a particular entry point function is called. In other
words, some of the functions exposed by the ScanaStudio object are only available for a particular
context.

For instance, if the on_decode_signals function is called - in the Protocol decoder context - the
ScanaStudio object will expose functions that allows fetching captured signals and creating decoded
data elements (that appears on the waveform). Example of a function available in this context:

1 ScanaStudio.trs_reset(0); // reset the transitions iterator for channel
0

Similarly, in the protocol decoder context, functions related to building signal cannot be called. For
example, the following code is invalid if called from protocol decoder context:

1 ScanaStudio.builder_add_samples(0,1,200); //Add 200 HIGH LEVEL samples
on channel 0

However, some functions in the ScanaStudio objects are available across all contexts (global context),
like the functions used to display console messages:

1 ScanaStudio.console_info_msg("Hello World"); //Valid in all contexts

(c) Ikalogic SAS 2019 12

Introduction to ScanaStudio scripts

As you may have noticed, the entry point function called to launch your script defines the context
during the whole time the script is executed. Context can never be changed unless another entry
function is called.

Usually, you don’t need to worry about entry points and their contexts: you should never need to use
signal building functions when decoding signals, and vice-versa. If at some point you feel limited by
the context of the script, that probably means that you’re doing something wrong and that it’s time to
rethink the architecture of your script.

Along this document, all function available through ScanaStudio object are described and its context
clearly stated.

Anatomy of a simple script

Before we get deeper into the exhaustive list of functions and methods used to build sophisticated
scripts, let’s analyze a very simple script to get a global view of the architecture of a script and how
di�erent parts, work together. Let’s imagine we want to build a script that will calculate the frequency
of signals, and display the frequency on the waveform as shown below.

Figure 3: Result of Frequency decoder script

Such a script would have twomandatory entry-point functions:

• A function to draw the GUI that allows the user of the script to select which channel to decode
(this entry-point function needs to be named on_draw_gui_decoder())

• A function to decode the logic signals into meaningful, frequency values expressed in Hz, Khe or
Mhz. This entry-function, as you may have guessed, needs to be named on_decode_signals(
resume)

(c) Ikalogic SAS 2019 13

Introduction to ScanaStudio scripts

Building the GUI

For that simple script, the GUI is very minimalistic, since there is only one option that needs to be set
(or changed) by the user of the script, which is the channel which shall be analyzed by this decoder.

Figure 4: Frequency decoder GUI

To create such a GUI, first, we have to create the on_draw_gui_decoder() function: the entry-point
function which will be called by ScanaStudio when the GUI needs to be redrawn.

1 function on_draw_gui_decoder()
2 {

(c) Ikalogic SAS 2019 14

Introduction to ScanaStudio scripts

3 ScanaStudio.gui_add_ch_selector("freq_ch","Channel to analyze","Freq"
);

4 }

The function ScanaStudio.gui_add_ch_selector(...) simply tells ScanaStudio to add a GUI
component called “ch_selector” (Channel selector). As the name implies, this adds a combo box with
the list of channels supported by the device currently used. This function takes 3 parameters:

1. The ID of the GUI element. This should be a unique text string, and it will be used later to retrieve
the value of the combo box (the user’s choice). In our example, we used “freq_ch”.

2. The text label to show next to the combo box.
3. The default (new) channel name. A decoder can prompt the user to rename the labels of logic
analyzer channels to something more meaningful than the standard “Channel n” label. In our
case, we can prompt the user to rename the channel to “freq”.

Note: The title of the GUI cannot be changed via the on_draw_gui_decoder() function. It is auto-
matically generated from themeta-information provided by the script.

Decoding the signals

Another entry-point function needs to be implemented: the on_decode_signals(resume) function.
This function is called each time ScanaStudio needs to decode logic signals using that script. In some
situations, this function may be called repeatedly as new logic signals come in (in case of a logic
analyzer that supports live data stream). The function argument “resume” is true if it’s a repeated
function call for the same capture. At the very first call to that function, the resume parameter is false.
All global variables retain their value between di�erent calls with resume == true.

1 function on_decode_signals(resume)
2 {
3 if (!resume) //If resume == false, it's the first call to this

function.
4 {
5 //initialization code goes here, ex:
6 ScanaStudio.console_info_msg("Frequency analyzer initialized");
7 state_machine = 0;
8 sampling_rate = ScanaStudio.get_capture_sample_rate();
9 freq_ch = ScanaStudio.gui_get_value("freq_ch");
10 ScanaStudio.trs_reset(freq_ch); //reset the trs iterator.
11 last_falling_edge = last_rising_edge = -1;
12 }

(c) Ikalogic SAS 2019 15

Introduction to ScanaStudio scripts

13
14 while (ScanaStudio.abort_is_requested() == false)
15 {
16 if (!ScanaStudio.trs_is_not_last(freq_ch))
17 {
18 break;
19 }
20 switch (state_machine)
21 {
22 case 0: //search for rising edge
23 trs = ScanaStudio.trs_get_next(freq_ch); //fetch next

transition
24 if (trs.value == 1) { //Rising edge found?
25 if (last_rising_edge != -1){ //if it's not the very first

rising edge
26 period = (trs.sample_index - last_rising_edge) /

sampling_rate; //period in [s]
27 frequency = 1/period; //in [Hz]
28 ScanaStudio.dec_item_new(freq_ch,last_rising_edge,trs.

sample_index);
29 ScanaStudio.dec_item_add_content("F = " + ScanaStudio.

engineering_notation(frequency,3) + "Hz");
30 }
31 last_rising_edge = trs.sample_index;
32 state_machine++;
33 }
34 break;
35 case 1: //search for falling edge
36 trs = ScanaStudio.trs_get_next(freq_ch); //fetch next

transition
37 if (trs.value == 0){ //Falling edge found?
38 last_falling_edge = trs.sample_index;
39 state_machine = 0;
40 }
41 break;
42 default:
43 state_machine = 0;
44 }
45 }
46 }

We’re not going to analyze this script in detail for the time being, but it’s worth noting that it’s fully

(c) Ikalogic SAS 2019 16

Introduction to ScanaStudio scripts

functional.

Putting the finishing touches

Finally you should add ameta-information bloc (or update it if you only modified the script). For our
example, we’ll write the following meta-information bloc:

1 /*
2 <NAME> Frequency decoder </NAME>
3 <DESCRIPTION>
4 Analyze logic signals to shows its frequency. This script's main aim
5 is to provide a simple example to be inspired from when creating a
6 new decoder.
7 </DESCRIPTION>
8 <VERSION> 0.0 </VERSION>
9 <AUTHOR_NAME> Ibrahim KAMAL </AUTHOR_NAME>
10 <AUTHOR_URL> i.kamal@ikalogic.com </AUTHOR_URL>
11 <COPYRIGHT> Copyright Ibrahim KAMAL </COPYRIGHT>
12 <LICENSE> This code is distributed under the terms of the GNU General

Public License GPLv3 </LICENSE>
13 <RELEASE_NOTES>
14 V0.0: Initial release.
15 </RELEASE_NOTES>
16 */

(c) Ikalogic SAS 2019 17

Introduction to ScanaStudio scripts

GUI related functions

This chapter will deal with the di�erent GUIs (Graphical User interfaces) used to interact with the user
of your script.

Figure 5: Script/User interaction via GUI

Currently, ScanaStudio uses (and needs) a GUI for decoder scripts and trigger sequence builder scripts.
Users of those two kinds of scriptsmay very well have absolutely no experience in programming and/or
JavaScript, so the GUI is here to allow those users to configure di�erent parameters that will a�ect the
operation of the script.

Here are the main groups of GUI related functions:

• Functions to construct (draw) the GUI
• Functions to evaluate (and validate) the choices set by the user in the GUI (optional)
• A function to retrieve the choices set by the user in the GUI

Note on writing convention: Through all this document, a function’s parameter is considered to be
numerical values unless it’s written in “quotation_marks”, which means the function expects a text
string for this parameter.

GUI entry-point functions

As described in previous chapters, ScanaStudio will search for special “entry-point” functions in your
script to perform certain actions. There are several entry-point functions used to construct a GUI,
depending on what it will be used for:

(c) Ikalogic SAS 2019 18

Introduction to ScanaStudio scripts

1 function on_draw_gui_decoder()
2 {
3 // function called when ScanaStudio needs to display the protocol

decoder GUI
4 }
5
6 function on_draw_gui_trigger()
7 {
8 // Function called when ScanaStudio needs to display the trigger

sequence generator GUI
9 }
10
11 function on_draw_gui_signal_builder()
12 {
13 // Function called when ScanaStudio needs to display the signal

builder GUI
14 }

Any script that builds a GUI must be in one of these functions (or in a function that is only called from
one of these functions).

Optionally, the script may implement other entry level functions used to evaluate the choices set by
the user in the GUI, and prevent him from going further if some choices are incoherent or unlogic. The
evaluation function can even display a message to the user explaining what choice is incoherent.

The GUI evaluation entry point functions (which will be discussed in detail later in this chapter) are:

• on_eval_gui_decoder()
• on_eval_gui_trigger()
• on_eval_gui_signal_builder()

Those functions are optional: If one is omitted, the corresponding GUI will always be considered to be
valid, which may be the case for some scripts.

GUI construction

Below is the exhaustive list of functions exposed by the ScanaStudio object that can be used to
build a GUI. Please note that GUI is drawn in the same order as the functions used to append di�erent
elements to it.

(c) Ikalogic SAS 2019 19

Introduction to ScanaStudio scripts

ScanaStudio.gui_add_ch_selector(“id”,“caption”,“new_channel_name”)

Description: this function appends a channel selector to the GUI, that is, a combo box with a list of
channels. The exact number of channels in that combo box will depend on the logic analyzer device
being used. This is probably the most used GUI elements.

Parameters

• “id” : a unique text string used to identify this GUI item (not displayed to the user)
• “caption” : a caption to describe (in a few words) what the channel will be used for. (e.g. You
could use “Clock” to let the user select the channel to be used a clock input for some protocol.)

• “new_channel_name”: the default (new) channel name. A decoder can prompt the user to
rename the labels of logic analyzer channels to something more meaningful than the standard
“Channel n” label.

Context : Global

ScanaStudio.gui_add_text_input(“id”,“caption”,“default_value”)

Description: This function appends a text input field to the GUI.

Parameters:

• “id” : a unique text string used to identify this GUI item (not displayed to the user)
• “caption” : a caption to describe this GUI item.
• “default_value” the value to be filled in the text box by default.

Context : Global

ScanaStudio.gui_add_baud_selector(“id”,“caption”,default_value)

Description: This function appends a BAUD rate selector element. The baud rate selector is an en-
hanced text box; the user can manually type a BAUD rate (like 115200), but he can also click on the
“Auto detect” button as show in the image below.

Figure 6: BAUD Rate selector example

Clicking the Auto detect button shows a dialog like in the image below:

(c) Ikalogic SAS 2019 20

Introduction to ScanaStudio scripts

Figure 7: BAUD rate auto detect dialog

For each channel in the drop down list, ScanaStudio will o�er two options to the user: the exact baud
rate measured (guessed) from the signals on that channel, and the nearest standard baud rate (picked
from a list of well known BAUD rates like 115200 for serial UART, or 1000000 for CAN bus). Clicking on
one of those two baud rate would autofill the BAUD rate text box in the initial GUI item.

Parameters:

• “id” : A unique text string used to identify this GUI item (not displayed to the user)
• “caption” : A caption to describe this GUI item.

Context : Global

ScanaStudio.gui_add_check_box(“id”,“caption”,is_checked)

Description: This function appends a checkbox to the GUI.

Parameters:

• “id” : A unique text string used to identify this GUI item (not displayed to the user)
• “caption” : A caption to describe this GUI item.
• is_checked : A boolean indicating if the checkbox is checked by default. You can either use the
keyword true/false or an integer 1/0.

Context : Global

ScanaStudio.gui_add_combo_box(“id”,“caption”)

Description: This function appends a combo box to the GUI. The content of the combo box is added
using the function ScanaStudio.gui_add_item_to_combo_box. Here is an example code that
appends a combo box to the GUI, then inserts 3 elements to that combo box:

(c) Ikalogic SAS 2019 21

Introduction to ScanaStudio scripts

1 ScanaStudio.gui_add_combo_box("my_combo","Select an option");
2 ScanaStudio.gui_add_item_to_combo_box("Option 1");
3 ScanaStudio.gui_add_item_to_combo_box("Option 2");
4 ScanaStudio.gui_add_item_to_combo_box("Option 3");

Parameters:

• “id” : A unique text string used to identify this GUI item (not displayed to the user)
• “caption” : A caption to describe this GUI item.

Context : Global

ScanaStudio.gui_add_item_to_combo_box(“item_txt”,is_selected)

Description: This function appends a new line (new item) to the combo box that was last appended to
the GUI.

Parameters:

• “item_txt” : The text to display for that item
• is_selected : a boolean value that defines weather an item is selected by default. If this param-
eter is ignored, the value false will be used by default. If no any element as the parameter
is_selected set to true, then the very first element will be selected by default.

Context : Global

ScanaStudio.gui_add_engineering_form_input_box(“id”, “caption”, min_value, max_value,
default_value, “unit”)

Description: This function adds an input box specifically made for numbers that need to be entered in
engineering format (e.g.: 2 ms or 25 MHz). By engineering format, wemean a number that is composed
of:

• a value,
• a prefix
• and a unit.

For example, the following line of code:

1 ScanaStudio.gui_add_engineering_form_input_box("rate","Bit rate",100,1
e6,125e3,"Bit/s");

(c) Ikalogic SAS 2019 22

Introduction to ScanaStudio scripts

will create this GUI item:

Figure 8: example bit rate selector using engineering form input box

Parameters:

• “id”: A unique text string used to identify this GUI item (not displayed to the user).
• “caption”: A caption to describe this GUI item.
• min_value: along with max_value, this parameter lets ScanaStudio calculate the most suitable
prefixes for the unit (the prefixes are “n” for nano, “u” for micro, “m” for milli, “k” for kilo, etc.).

• default_value: the default value to be displayed in the input box when the GUI item is created
• “unit”: a text, usually composed of one or a few characters. The prefix and the unit will be
combined together on the GUI item, to form engineering values like “KHz” or “mS”.

Context: Global

ScanaStudio.gui_add_info_label(“text”)

Description: This function appends an information label. This GUI element is not used to get input
from the user, but rather to give him some instructions. There is no “id” parameter for this GUI element,
for the simple reason that it does not need to be?? addressed later, neither can this GUI element hold
an information to be retrieved later.

Parameters:

• “text”: This parameter hold the text to be displayed.

Context : Global

ScanaStudio.gui_add_separator(“title”)

Description: This function simply adds a separator (horizontal ruler) between two sections in the GUI.
This function has no “id” parameter, and cannot be addressed later by the script.

Parameters:

• “title”: This optional parameter hold the title to be displayed on the ruler.

Context : Global

(c) Ikalogic SAS 2019 23

Introduction to ScanaStudio scripts

File system GUI elements

Some scripts can access files either for reading or writing. For example, an I2S protocol decoder (used
to transmit audio signals) can output decoded data to a *.wav file. Similarly, a protocol decoder script
may refer to some local configuration file - for example - to adjust various parameters that would be
complex and tedious to set in GUI. Please note that for security reasons, ScanaStudio scripts cannot
have access to the actual file path set by the user in the GUI, nor can it arbitrarily read or write files on
the user’s computer. Only the files selected by the user via the provided GUI items are accessible to the
script (but without exposing the file path to the script).

ScanaStudio.gui_add_file_save(“id”,“caption”,“extension”)

Description: This function adds a GUI item that prompts the user to select a file path for writing. If the
file already exists, ScanaStudio will ask the user to confirm if the file can be overwritten.

Parameters:

• “id”: Unique ID of this GUI item. This ID is used by the script to select the file to be opened. As
stated before, the script will never has access to the file’s path; file system operation are only
carried via this ID, which e�ectively limits the scope of the files read/write operation to the file(s)
specified by the user of the script in the GUI.

• “caption”: Text that will appear next to the save file item. This is a good place to describe what
this file will be used for.

• “extension”: A text string that defines the extension to be used by ScanaStudio’s file dialog to
filter the files. use “.” or leave empty to show all files. use "*.csv" to show only CSV files, for
example.

Context: Global

ScanaStudio.gui_add_file_load(“id”,“caption”,“extension”)

Description: This function is similar to the ScanaStudio.gui_add_file_save with the exception
that a “load file” dialog will be used. That also means that this GUI item cannot be used to create a new
file, it can only be used to select an existing file.

Hidden GUI elements

Hidden GUI elements can be treated like any other elements, with the di�erence that it wont be visible
to the user. They exist for one particular purpose: sub-decoders.

First, let’s explain what are sub-decoders: A sub-decoder is a decoder that is called by another “high
level” decoder. By “high level”, we mean a decoder that is accessed by the user, for which a GUI is

(c) Ikalogic SAS 2019 24

Introduction to ScanaStudio scripts

displayed. A typical application of sub-decoders, is to build a temperature sensor protocol decoder
that is based on a low level I2C decoder. Being able to call a sub-decoder from the high level decoder
prevents the high level script from implementing the whole I2C decoding layer. Any decoder can
become a sub-decoder provided that it’s called by another decoder.

Since the sub-decoder has noway of displaying a GUI, it’s the high level decoders’ job to expose hidden
GUI items with the exact same IDs expected by the sub-decoder.

ScanaStudio.gui_add_hidden_field(“id”,“value”)

Description: This function appends a new hidden GUI field.

Parameters:

• “id” : A text string used to identify this GUI item (not displayed to the user). This ID needs to be
exactly the same as the ID of a GUI element of a sub-decoder.

• “value” : A text or numerical value attached to that hidden GUI item. Context : Global

Examples

1 //create a numeric item with the value = 1.
2 //Note that there are no "quotation marks" around the value parameter
3 ScanaStudio.gui_add_hidden_field("id_num",1);
4 //Create a text value item
5 ScanaStudio.gui_add_hidden_field("id_txt","text value");
6 //Create a boolean value item
7 ScanaStudio.gui_add_hidden_field("id_bool","true");

ScanaStudio.gui_set_hidden_field(“id”,“value”)

Description: This function changes the value of a hidden field. This can be useful when a decoder
needs to change the behavior of a sub-decoder.

Parameters:

• “id” : ID of the hidden field to be changed
• “value” : New value to be set for that hidden field. It can be a number or a text string

Context : Global

As with the gui_add_hidden_field function, youmay set a numeric value by ignoring the “quotation
mark” around the value parameter, e.g.:

(c) Ikalogic SAS 2019 25

Introduction to ScanaStudio scripts

1 ScanaStudio.gui_set_hidden_field("id_numeric",5);

Grouping GUI elements in tabs

It is possible to group GUI elements in separate accordion tabs. Each tab has a di�erent title (defined
by the “caption” parameter). Accordion tabs are great when it’s needed to toggle between hiding and
showing a large amount of content.

An example for the usage of tabs is the SPI protocol script, which uses tabs to categorize advanced
configuration options, and prevent cluttering the user interface. Only the most important andmost
used parameters are visible right from the start.

Figure 9: SPI protocol GUI configuration

Putting GUI elements inside accordion tabs is done using the functions presented below.

ScanaStudio.gui_add_new_tab(“caption”,is_expanded)

Description: This function creates a new accordion tab element. All GUI elements appended a�er a
call to ScanaStudio.gui_add_new_tab is added to that tab.

Parameters:

(c) Ikalogic SAS 2019 26

Introduction to ScanaStudio scripts

• “caption” : A title to describe this tab.
• is_expanded : A boolean value that defines weather a tab is expanded by default.

Context : Global

ScanaStudio.gui_end_tab()

Description: This functionends the tab thatwaspreviously startedwith the functiongui_add_new_tab
(...). Any GUI element added a�er a call to gui_end_tab()will not be grouped under a tab that
can be expanded or minimized.

Context: Global

Examples:

1 ScanaStudio.gui_add_new_tab("Test tab 1",true);
2 ScanaStudio.gui_add_check_box("c01","Option 1",false);
3 ScanaStudio.gui_add_check_box("c02","Option 2",false);
4 ScanaStudio.gui_end_tab();
5
6 ScanaStudio.gui_add_new_tab("Test tab 2",false);
7 ScanaStudio.gui_add_check_box("c11","Option 1",false);
8 ScanaStudio.gui_add_check_box("c12","Option 2",false);
9 ScanaStudio.gui_end_tab();
10
11 ScanaStudio.gui_add_new_tab("Test tab 3",false);
12 ScanaStudio.gui_add_check_box("c21","Option 1",false);
13 ScanaStudio.gui_add_check_box("c22","Option 2",false);
14 ScanaStudio.gui_end_tab();

The above example would produce the GUI interface shown in the image below:

(c) Ikalogic SAS 2019 27

Introduction to ScanaStudio scripts

Figure 10: GUI tabs example

Selectable containers

Selectable containers are special GUI constructs that have three roles: * Grouping GUI elements in
containers * Ensuring only one container is visible and selected at a given moment. * Knowing which
container is chosen by the user

In other words, selectable containers are used when only one among several GUI designs alternatives
should be used, depending user choices. Each one of those alternatives can have a totally di�erent
GUI, thus, this function groups the GUI elements of each alternative in a separate exclusive container.

(c) Ikalogic SAS 2019 28

Introduction to ScanaStudio scripts

Figure 11: Selectable containers group

The script can later retrieve the state of each container (whether it’s selected or not), and decide what
GUI elements to consider fromwhich container.

Only one container in a containers group - the one that is selected - is displayed to the end
user. The image below shows the vocabulary used to describe Selectable containers’ GUI.

(c) Ikalogic SAS 2019 29

Introduction to ScanaStudio scripts

Putting GUI elements inside containers, and putting containers inside a containers group is done using
the functions presented below.

ScanaStudio.gui_add_new_selectable_containers_group(“id”,“caption”)

Description: This function creates a new selectable containers group. A call to this functionmust be
followed by one ormore calls to ScanaStudio.gui_add_new_container. Other GUI elements (like
combo boxes, text input or check boxes) cannot be added “inside” the selectable_containers_group; a
container must be created first, then GUI items can be added to that container.

Parameters:

• “caption”: Title of the containers group
• “id”: A unique text string used to identify this GUI item (not displayed to the user). This unique
ID can later be used to retrieve the index of the selected container in a group (See the function
gui_get_value() for more information on that matter).

Context: Global

(c) Ikalogic SAS 2019 30

Introduction to ScanaStudio scripts

ScanaStudio.gui_end_selectable_containers_group()

Description: This function ends the containers group that was previously started with the function
gui_add_new_selectable_containers_group(...).

Context: Global

ScanaStudio.gui_add_new_container(“caption”,is_selected)

Description: This function creates a new container. A container can only be created between
gui_add_new_selectable_containers_groupandgui_end_selectable_containers_group
calls.

Parameters:

• “caption” : A title to describe this container.
• id_selected : A boolean value that defines weather a container is selected by default. Only one
container in a containers group should have the property is_selected set to true.

Context: Global

ScanaStudio.gui_end_container()

Description: This function end the container that was created by gui_add_new_container.

Context: Global

GUI evaluation and validation

GUI evaluation is a process by which a GUI is tested against any incoherencies. By incoherencies, we
mean choicesmade by the user thatwould yield to unexpected orwrong results. For example, choosing
the same channel twice as the clock and the data for a protocol decoder is incoherent.

The GUI evaluation functions prevents the user to go any further until incoherencies are fixed, as it is
described in the diagram below:

(c) Ikalogic SAS 2019 31

Introduction to ScanaStudio scripts

Figure 12: GUI Evaluation process

All GUI interfaces can be evaluated using one of the entry-function below:

• on_eval_gui_decoder()
• on_eval_gui_trigger()
• on_eval_gui_signal_builder()

Please note that this functions is optional: If omitted, the corresponding GUI will always be considered
as valid.

All these functions behave in the same way: When called by ScanaStudio, they have to evaluate the
GUI and return an empty string ("") in case of a valid GUI, or a text string describing the problem.

Below is an example of a decoder GUI evaluation function:

(c) Ikalogic SAS 2019 32

Introduction to ScanaStudio scripts

1 function on_eval_gui_decoder()
2 {
3 if (ScanaStudio.gui_get_value("ch_data") == ScanaStudio.gui_get_value

("ch_clock"))
4 {
5 return "Error: Data and clock can't share the same channel";
6 }
7 return ""; //All good.
8 }

GUI data retrieval

As discussed in this chapter, each GUI element has a unique ID. This ID is used to retrieve the values set
by the user in the GUI (which is the whole purpose of the GUI in the first place).

A single function allows GUI data retrieval for any GUI element:

ScanaStudio.gui_get_value(“id”)

Description: This function returns the value of the GUI element “id”. For a combo box or channel
selector, this function will return the index of the element selected by the user (0 based).

For checkboxes, it will return true or false depending on the choice of the user.

For other input boxes (text or numbers), this function will return the characters as they were entered
by the user.

For tab GUI element, it will return true or false depending on weather a tab is selected or not.
Obviously, only one tab can be selected at a given time, hence, only one tab’s ID will return the value
true.

For selectable containers group, this function will return the index of the container selected by the
user.

Parameters:

• “id”: text string representing the GUI element.

Context : Global

(c) Ikalogic SAS 2019 33

Introduction to ScanaStudio scripts

Complete example

As an example the code below is functional (but useless) decoder script:

1 /* Protocol meta info:
2 <NAME> My Protocol </NAME>
3 <DESCRIPTION>
4 My protocol can decode pretty much any logic signal!
5 </DESCRIPTION>
6 <VERSION> 0.0 </VERSION>
7 <AUTHOR_NAME> Your name </AUTHOR_NAME>
8 <AUTHOR_URL> your@email.or.website </AUTHOR_URL>
9 <HELP_URL> https://github.com/ikalogic/ScanaStudio-scripts-v3/wiki </

HELP_URL>
10 <COPYRIGHT> Copyright your name </COPYRIGHT>
11 <LICENSE> This code is distributed under the terms of
12 the GNU General Public License GPLv3 </LICENSE>
13 <RELEASE_NOTES>
14 V0.0: Initial release.
15 </RELEASE_NOTES>
16 */
17
18 //Decoder GUI
19 function on_draw_gui_decoder()
20 {
21 ScanaStudio.gui_add_ch_selector("ch","My channel selector","

new_channel_name");
22 ScanaStudio.gui_add_text_input("text","My text input","Write some

text");
23 }
24
25 var ch,text;
26 function on_decode_signals(resume)
27 {
28 ch = ScanaStudio.gui_get_value("ch");
29 text = ScanaStudio.gui_get_value("text");
30
31 ScanaStudio.console_info_msg("The selected channel is:" + (ch+1) +
32 ", and the input text is: "+ text);
33 }

This example creates a simple GUI with two elements as shown in the image below:

(c) Ikalogic SAS 2019 34

Introduction to ScanaStudio scripts

Figure 13: Example decoder GUI

In this examples, the GUI values are retrieved and shown in the console:

(c) Ikalogic SAS 2019 35

Introduction to ScanaStudio scripts

Figure 14: output of example decoder showing how to retrieve GUI values

For your information, the console can be displayed by going to the setting menu in ScanaStudio (top
right icon) and tick the “Show log” or “Show console” depending on your version of the so�ware.

(c) Ikalogic SAS 2019 36

Introduction to ScanaStudio scripts

Protocol decoding

This chapter discusses the process of decoding logic signals via a script. Some of themmay refer to
this kind of scripts as “protocol interpreter”. Their objective is to extract and display meaningful data
out of a sequence of brute logic signals (0’s and 1’s).

To implement a protocol decoder, you will need to perform the following tasks:

• Access the logic signals, which we will also refer to as “navigating thought the samples”
• Build decoder items, which is the final outcome of the protocol decoder: Human readable pieces
of information explaining the underlying bits and bytes of the protocol being decoded. (There
are other output forms that will be discussed in next chapters.)

Logic signals decoding entry-point function

Logic signals decoding is started by ScanaStudio using the entry-point function on_decode_signals
(resume). This function is called each time ScanaStudio needs to decode logic signals using that
script. In some situations, this function may be called repeatedly as new chunks of logic signals come
in (in case of a logic analyzer that supports live data stream). The function argument “resume” is true
if it’s a repeated function call for the same capture. At the very first call to that function, the resume
parameter is always false. All global variables (that are declared outside on_decode_signals()
function) retain their value between di�erent calls with resume == true.

1 function on_decode_signals(resume)
2 {
3 if (resume != true) //First call, initialize
4 {
5 //Initialize your script here
6 }
7
8 while (ScanaStudio.trs_is_not_last(pwm_ch))
9 {
10 // decoding goes here
11 }
12 }

The script must be carefully written in a way that supports andmakes use of the resume parameter.
Practically, this means that each time the on_decode_signals(true) function is called, it needs to
resume fromwhere it le�. The way this can be implemented is le� to the programmer behind each
script, but usually, implementing a state machine is a good start to ensure your on_decode_signals

(c) Ikalogic SAS 2019 37

Introduction to ScanaStudio scripts

function scales up smoothly while more features are added to your script. A global value can hold the
current state of the state machine, allowing the operation to be easily resumed fromwhere it le�.

The script must also implement the on_draw_gui_decoder() entry point function. This function
shall display the GUI that will be used to configure the decoder. The choices made by the user of the
script in that GUI can be retrieved via the gui_get_value function as described in the GUI chapter.

More about logic signals in ScanaStudio

In order to “navigate” through millions (and sometimes billions) of samples in an e�icient way, it’s
important to understand how ScanaStudio stores samples, and how you’re meant to browse those
samples. Optimizing the speed at which your script accesses samples and transitions is paramount
and will naturally a�ect the speed at which your script can decode the signals.

Figure 15: logic samples and transitions

ScanaStudio does not store each and every sample captured. Only transitions are stored using this
format:

• Transition polarity (also referred to as “transition value”)
• Sample index associated with that transition

Knowing the sampling rate and the sample index, you can calculate the exact position in time of each
transition.

This leads us to the trs_t object type (trs is the short form for “transition”), which is used all along
ScanaStudio decoder scripts. The object trs_t is constructed as shown below:

1 //trs_t constructor
2 function trs_t(sample_index, value) {

(c) Ikalogic SAS 2019 38

Introduction to ScanaStudio scripts

3 this.sample_index = sample_index;
4 this.value = value;
5 }

If you’re not very familiar with JavaScript, this is simply an object constructor. It means that a function
returning an object of type trs_t has two properties: sample_index and value.

Side note: Youmay also be wondering why ScanaStudio provides a sample index instead of the time
(expressed in seconds) for a specific transition. The answer is about precision and e�iciency. When
converting a sample index (an integer) to a time, wemay lose precision depending on the numbers
involved. Also, if ScanaStudio had to convert each and every transition from sample index to time,
it would be processing intensive for no particular reason. Working with sample indexes is not more
complicated than working directly with time, as you will see in this document.

Now that you know about the most basic building bloc - the “transition” - we can move on to the
concept of iterators. ScanaStudio uses iterators to navigate through transitions in a long sequence of
logic signals. Each channel has a dedicated iterator used to browse through the logic transitions.

This iterator is very e�icient if you request the very first transition, the next transition or the previous
one. On the other hand, it’s slower if you request - for example - the transition number 10 000, or the
transition just a�er the sample numbered 50 000.

What this means is, for a protocol decoder to perform decoding tasks as quickly as possible, it must
navigate through the samples, by looking at transitions, one a�er the other, in a unique sequential
order.

Not observing this simple rule will lead to poor performance, that is, decoders scripts that are very
slow to execute.

Samples, time, and sampling rate

It’s important to clear up any doubts about samples, time and sampling rate. All three parameters are
tightly related.

Samples (and samples indexes) is the only way for a script and ScanaStudio, to agree on a particular
instant in a capture. Depending onwhat protocol you are decoding, timemay not be of any importance.
That is usually the case for protocols like I2C and SPI which are fully synchronous to a clock signal. For
other protocols like serial UART or CAN, time plays an essential role.

So how do you convert a sample index to a time (expressed in seconds)? For that, you need to retrieve
the sampling rate which was used to capture the samples. The sampling rate may change from one
capture to another but is constant for a given capture. (For the sake of simplicity, we are ignoring the

(c) Ikalogic SAS 2019 39

Introduction to ScanaStudio scripts

case of state mode operation supported by some late logic analyzer devices, where the sampling rate
have no any meaning andmay change from one sample to another.)

The sampling rate can be retrieved using this function:

ScanaStudio.get_capture_sample_rate()

Description: This function simply returns the sampling rate for the last capture. Note: If the user
changed the sampling rate in the device configuration tab in ScanaStudio, this won’t change the value
of the sampling rate, until a new capture is initiated. In other words, the sampling rate returned by this
function is the one that was used to capture the samples displayed on the screen.

Context: Protocol decoder

So for instance, for a given sample index and sampling rate, the time is given by the following equation:

time = (1 / sampling_rate)* sample_index

Which could be simply rewritten as:

time = sample_index/sampling_rate

Browsing through logic signals

Below is the full list of functions available for the script to browse through the logic signals of a capture.

ScanaStudio.trs_reset(channel_index)

Description: This function set the position of the iterator at the very first transition of the channel
channel_index

Parameters:

• channel_index : index of the channel (0 Based, that is, the first channel’s index in 0).

Context : Protocol decoder

ScanaStudio.trs_get_before(channel_index,target_sample)

Description: This function sets the position of the iterator for channel channel_index at the first
transition that follows the sample target_sample.

Parameters:

• channel_index: index of the channel (0 Based, that is the first channel’s index in 0).

(c) Ikalogic SAS 2019 40

Introduction to ScanaStudio scripts

• target_sample: index of the sample (0 based).

Return value: Returns a trs_t object.

Context: Protocol decoder

ScanaStudio.trs_get_next(channel_index)

ScanaStudio.trs_get_previous(channel_index)

Description: Those two functions advance the iterator to the next/previous transition.

IMPORTANT NOTE: Before those functions can be used for a specific channel, the function
ScanaStudio.trs_reset or ScanaStudio.trs_get_before need to be called first to initialize
the iterator.

Parameters:

• channel_index: index of the channel (0 Based, that is the first channel’s index in 0).

Return value: Returns a trs_t object.

Context: Protocol decoder

ScanaStudio.trs_is_not_last(channel_index)

Description: This function is used to check if the iterator for the channel channel_index has reached
the last transition

Parameters:

• channel_index: index of the channel (0 Based, that is the first channel’s index in 0).

Return value: Returns true if the iterator has still not reached the last transition

Context: Protocol decoder

get_available_samples(channel_index)

Description: This function returns the total number of available samples for a channel. This function
is particularly useful when working with asynchronous protocols (like UART) and when decoding is
performed live - while samples are being captured. It allows the script to wait until a minimum number
of samples is available before attempting to decode a whole word or a whole packet.

Parameters:

• channel_index: index of the channel (0 based).

(c) Ikalogic SAS 2019 41

Introduction to ScanaStudio scripts

Return value: Returns the number of samples

Context: Protocol decoder

Using the bit sampler feature

In some situations, navigating using just transitions can be complicated or limiting. For example, if
we’re decoding serial UART or CAN bus, the position of the bits won’t fall on exact transition positions.
On the contrary, 0 and 1 bits in a serial data stream are sampled at some point in time between two
transitions.

Figure 16: bit sampler

The bit sampler is a helper module in ScanaStudio script that is designed to help you to easily extract
the bit values (0’s or 1’s) at certain sample indexes, without having to worry about the actual transitions
and the underlying iterator’s position.

The bit sampler is used via those two functions:

• ScanaStudio.bit_sampler_init
• ScanaStudio.bit_sampler_next

ScanaStudio.bit_sampler_init(channel_index,start_sample_index,samples_increment)

Description: This function initializes the bit sampler for the channel channel_index. There is only
one bit sampler per channel, so each time a bit sampler is initialized for a channel, the previous bit
sampling operation on that same channel will be aborted.

Parameters:

• channel_index: Index of the channel (0 Based, that is the first channel’s index in 0).
• start_sample_index: Sample position of the very first bit
• samples_increment: The number of samples increment between two bits. For a known BAUD
rate, the samples_increment parameter is usually calculated as:

(c) Ikalogic SAS 2019 42

Introduction to ScanaStudio scripts

samples_increment = sampling_rate

BAUD_rate
(1)

Context: Protocol decoder

ScanaStudio.bit_sampler_next(channel_index)

Description: This function returns the binary value (0 or 1) of the next bit in a sequence of bits defined
by ScanaStudio.bit_sampler_init.

Parameters:

• channel_index: Index of the channel (0 Based, that is the first channel’s index in 0).

Example:

Let’s consider this example logic signal, where the sample counter is displayed to illustrate the example
(starting arbitrarily from the sample number 15). The first sample that represents the first bit in a serial
data word is sample 21. Then, we need to increment 3 samples to jump at the next bit in that serial
word.

Figure 17: Bit sampler example

The bit sampler initialization and usage for that logic signal would be:

1 ScanaStudio.bit_sampler_init(channel,21,3);
2 ScanaStudio.bit_sampler_next(channel); //returns 0
3 ScanaStudio.bit_sampler_next(channel); //returns 0
4 ScanaStudio.bit_sampler_next(channel); //returns 1
5 ScanaStudio.bit_sampler_next(channel); //returns 1

Context: Protocol decoder

Adding decoder items

Decoder items is the most standard way of displaying decoded information (interpreted bits and bytes
of a specific protocol) on the waveform. Historically, in the very earlier versions of ScanaStudio, this

(c) Ikalogic SAS 2019 43

Introduction to ScanaStudio scripts

was the only way to display the result of a decoder. Later on, other solutions were introduced like the
“Hex View” or the “Packet View”.

Back to the decoder items. The image below shows exactly how decoder items are supposed to look
like, and provides some essential vocabulary.

Figure 18: decoder items

Before getting into the details of the di�erent functions used to construct decoder items, it’s important
to have a global overview. A decoder item can be seen as a container. This container is materialized
on the screen as a box, which is attached to a specific channel and is drawn on a semi-transparent
layer on top of the waveforms. It is delimited by a “start_sample_index” and an “end_sample_index”.
Those 2 parameters are mandatory for any decoder item. The content of the decoder item, however, is
totally optional (you may even draw an empty decoder item, if that makes any sense in your particular
protocol). The content is composed of plain text.

Additionally, one may add sample points to a decoder item. Those visual markers are only here to
showwhen the data was sampled according to the specific protocol being decoded. For example, in
a CAN bus protocol, the sample points may be used to show the points in time where a valid bit is
sampled, and where a stu�ed bit is discarded.

Creating decoder items is done in the following steps:

1. Create (open) a new decoder item
2. Add content to last created decoder item
3. Add sampling points (Optional).
4. End (close) the decoder item

In other words, all the function calls that add content to a decoder item need to be encapsulated
between dec_item_new and dec_item_end functions.

Information: Decoder items must be created in a chronological order, that is, the start_sample of a
decoder itemmust be bigger that the end_sample of the previous sample.

(c) Ikalogic SAS 2019 44

Introduction to ScanaStudio scripts

ScanaStudio.dec_item_new(channel_index,start_sample,end_sample);

Description: This function creates a new decoder item. In some situations, the decoder item creation
may fail. To verify that a decoder itemwas added or to know the reason what it wasn’t created, you
should refer to the returned value as described below.

Parameters:

• channel_index: The index of the channels to which this decoder item is to be attached.
• start_sample: The sample index representing the le� boundary of the decoder item box.
• end_sample: The sample index representing the right boundary of the decoder item box.

Return value: Returns a success or error code:

Returned value Meaning

1 Success

0 Ignored because decoder have been aborted by the user

-1 Ignored because it does follow a chronological order (start_sample
smaller than previous item’s end_sample)

-2 Ignored because of incoherent parameters (start_sample is bigger
than end_sample)

Context: Protocol decoder

ScanaStudio.dec_item_add_content(“content”);

Description: This function adds (text) content to the last created decoder item. This text content can
be anything like HEX data bytes, ASCII characters, plain text, or any association of these. It is possible
to addmore than one version of the content, to allow ScanaStudio to display themost appropriate
version depending on the zoom level. For instance, if the text to be displayed is “Acknowledge”, one
may add di�erent texts as explained in the example below:

1 ScanaStudio.dec_item_new(0,1000,10000);
2 ScanaStudio.dec_item_add_content("ACKNOWLEDGE");
3 ScanaStudio.dec_item_add_content("ACK");
4 ScanaStudio.dec_item_add_content("A");

This will give the following results (screen shots taken at di�erent zoom levels)

(c) Ikalogic SAS 2019 45

Introduction to ScanaStudio scripts

Another example of some decoder item content having amix of text and data in hex format is presented
below:

1 ScanaStudio.dec_item_new(0,1000,10000);
2 ScanaStudio.dec_item_add_content("Data = 0x" + data_value.toString(16))

;
3 ScanaStudio.dec_item_add_content("D = 0x" + data_value.toString(16));
4 ScanaStudio.dec_item_add_content("0x" + data_value.toString(16));

Parameters:

• “content”: text content to be appended

Context: Protocol decoder

ScanaStudio.dec_item_add_sample_point(sample_index,“drawing”);

Description: This function adds a sample point to the last created decoder item

Parameters:

• sample_index: the index of the sample at which the sampling point should be added
• “drawing”: A character to specify what drawing to be used for that sample point (all options are
listed in following table).

“drawing” character Drawing description

“0” A 0 character

“1” A 1 character

“P” A point

“X” A cross (usually used for “don’t care” or stu�ed bits)

“U” An arrow pointing up

“D” An arrow pointing down

“R” An arrow pointing right

“L” An arrow pointing le�

(c) Ikalogic SAS 2019 46

Introduction to ScanaStudio scripts

Context: Protocol decoder

ScanaStudio.dec_item_emphasize_error()

Description: This function adds emphasis for the last created decoder item, showing this item as an
error (by displaying a bold red border around it).

Context: Protocol decoder

ScanaStudio.dec_item_emphasize_warning()

Description: This function adds emphasis for the last created decoder item, showing this item as a
warning (by displaying a bold yellow border around it).

Context: Protocol decoder

ScanaStudio.dec_item_emphasize_success()

Description: This function adds emphasis for the last created decoder item, showing this item as an
success (by displaying a bold green border around it).

Context: Protocol decoder

ScanaStudio.dec_item_end()

Description: This function, along with dec_item_new() encapsulates a decoder item. This function
must be called a�er all content have been added, and a�er any manipulation have beenmade to the
decoder item. If this function is not called, the newly created decoder itemwill not be displayed, and
will be discarded.

Context: Protocol decoder

Packet view

If you haven’t already used the Packet View feature of ScanaStudio, it’s a good idea to use it (by
generating a demo workspace, adding an I2C protocol and generating some demo signals). Packet
view has the advantage of totally abstracting the electrical signals from the meaningful data packets.
However, as you will notice, packet view still allows a user to jump to a very specific instant in the logic
signals that is related to a particular packet.

A packet is composed of two parts: title and content. Also, a packet may contains sub-packets (each
sub packet has its own title and content).

(c) Ikalogic SAS 2019 47

Introduction to ScanaStudio scripts

Figure 19: Packets structure

The only di�erence between a root packets and a sub-packets is that sub packets are contained inside
a root packet that can be either collapsed (by default) or expanded. Expanding a root packet reveals
the sub packets contained in it.

ScanaStudio.packet_view_add_packet(root, ch, start_sample, end_sample, “title”, “content”,
“title_bg_html_color”, “content_bg_html_color”)

Description: This function creates a new root packet or sub-packet. A sub packet can only be created
(and added to a parent root packet) if a root packet was previously created.

Parameters:

• root: A booloan value. If true, this packet is created as a root packet. If false, this packet is
created as a sub packet as is appended to the last created root packet.

• ch: 0-based index of the channel related to this packet (if relevant). Set to -1 if not used. If ch,
start_sample and end_sample are set to valid values, ScanaStudio will be able to highlight
the portion of the signals related to a specific packet.

• start_sample: The sample index pointing at the start of the signals related to that packet. It can
be set to -1 if not used.

• end_sample: The sample index pointing at the end of the signals related to that packet. It can be
set to -1 if not used.

(c) Ikalogic SAS 2019 48

Introduction to ScanaStudio scripts

• “title”: The title of the packet
• “content”: The content of the packet
• “title_bg_html_color”: Background color of the title. This is an HTML color encoded as a string.
For example, white background is “#FFFFFF”

• “content_bg_html_color”: Background color of the content. This is an HTML color encoded as a
string.

Context: Protocol decoder.

Example: The following code creates two packets, with 2 child elements each:

1 function on_decode_signals(resume)
2 {
3 ScanaStudio.packet_view_add_packet(true,0,1000,2000,"Root packet","

Root packet content","#AA5050","#AA5050");
4 ScanaStudio.packet_view_add_packet(false,0,1000,2000,"child 1","child

content 1","#50AA50","#F0FFF0");
5 ScanaStudio.packet_view_add_packet(false,0,1000,2000,"child 2","child

content 2","#50AA50","#F0FFF0");
6 ScanaStudio.packet_view_add_packet(true,0,1000,2000,"Second packet","

Root packet content","#AA5050","#AA5050");
7 ScanaStudio.packet_view_add_packet(false,0,1000,2000,"child 1","child

content 1","#5050AA","#F0F0FF");
8 ScanaStudio.packet_view_add_packet(false,0,1000,2000,"child 2","child

content 2","#5050AA","#F0F0FF");
9 }

When the decode function is called, the PacketView should show the following packets:

Figure 20: example packets with child elements

Please note that the packets may be collapsed by default andmay need to be expanded.

(c) Ikalogic SAS 2019 49

Introduction to ScanaStudio scripts

Hex View

The HEX view in ScanaStudio is a way to present data bytes in similar presentation as in HEXmemory
dump. ScanaStudio also allows any byte in the HEX View to be traced back to the logic (electric) signals
related to it.

ScanaStudio.hex_view_add_byte(channel_index,start_sample,end_sample,data_byte)

Description: This function appends a new byte to the HEX View.

Parameters:

• channel_index: 0-based index of the channel related to this byte. set to -1 if not used or if
irrelevant.

• start_sample: The sample index pointing at the start of the signals related to that byte. Can be
set to -1 if not used.

• end_sample: The sample index pointing at the end of the signals related to that byte. Can be set
to -1 if not used.

• data_byte: A value that fits in 8 bits (1 byte).

Context: Protocol decoder

Example: The following example fills the hex view with bytes ranging from 0 to 127.

1 function on_decode_signals(resume)
2 {
3
4 for (var i = 0; i < 127; i++)
5 {
6 ScanaStudio.hex_view_add_byte(0,100,200,i);
7 }
8 }

When the code above is executed, the hex view should show the following HEX dump:

(c) Ikalogic SAS 2019 50

Introduction to ScanaStudio scripts

Figure 21: HEX View example

Colors

At somepoint, itmaybeuseful to retrieve thecolorsof thechannels. Typically, this canbeused toensure
packets areusing the samecolor as aparticular channel. For this purpose, theget_channel_color()
function is available.

ScanaStudio.get_channel_color(channel_index)

Description: This function return the HTML color (e.g. “#FFFFFF”) of a channel

Parameters:

• channel_index: 0-based index of the channel

Return value: Returns the color code in HTML format (e.g. “#FFFFFF” for white).

Context: Protocol decoder

Default packet colors A set of global colors are defined by ScanaStudio. Those standard colors are
recommended if you wish to build packets (in the PacketView) that o�er the same “look-and-feel” of
all other protocols.

The default packet colors are simply global variables defined under ScanaStudio.PacketColors

We have defined the following packets element types (or categories if you prefer):

• Wrap: All elements that wrap a packet, like Start, Stop, SOF, EOF, etc.
• Head: Header of a packet
• Preamble
• Data
• Check : Like checksum, CRC or any integrity checking related fields
• Error

(c) Ikalogic SAS 2019 51

Introduction to ScanaStudio scripts

• Misc : Anything that does not fall in the categories above.

And for each category, there is color for the Title and the Content of the packet.

To sum up, here are a few example of valid, globally defined, colors: ScanaStudio.PacketColors.
Head.Title or ScanaStudio.PacketColors.Data.Content.

One big advantage of using those pre-defined colors, is that your script will automatically adopt any
new color style that was updated in ScanaStudio, andwill always be in full harmonywith other protocol
decoder scripts.

So, for instance, instead of adding a PacketView item this way:

ScanaStudio.packet_view_add_packet(true,0,1000,2000,"Root packet","Root
packet content","#AA5050","#AA5050");

You could simple write it this way:

1 ScanaStudio.packet_view_add_packet(true,0,1000,2000,"Root packet",
2 "Root packet content",
3 ScanaStudio.PacketColors.Head.Title,
4 ScanaStudio.PacketColors.Head.Content);

(c) Ikalogic SAS 2019 52

Introduction to ScanaStudio scripts

Sub-decoder scripts

A sub-decoder is a decoder that is called by another “high level” decoder (also known as a nested
decoder). By “high level”, we mean a decoder that is accessed by the user, for which a GUI is displayed.
A typical application of sub-decoders, is to build a temperature sensor protocol decoder that is based
on a low level I2C decoder. Being able to call a sub-decoder from the high level decoder prevent the
high level script from (re)implementing the whole I2C decoding layer. In that specific scenario, the low
level sub-decoder would interpret the logic signals and output I2C packets. The high level temperature
sensor decoder would interpret I2C packets provided by the sub-decoder and provide meaningful
temperature information. Below is an example architecture of decoder/sub-decoder system.

Note: Along this documents, the terms “sub-decoder” and “low level decoders” are both used and
have the samemeaning.

The process of having a sub-decoder interpret the logic signals and provide decoded packets for
another high level decoder is referred to as “pre-decoding”.

Figure 22: Example achitecture of temperature sensor decoder

Any decoder can become a sub-decoder provided that it’s called by another decoder.

A decoder used as a sub-decoder is not “aware” of that situation, thus, it’s the high level decoder (the
one calling the sub-decoder) to provide all the information needed by the sub-decoder to operate
properly. This information is nothing more than GUI values that the sub-decoder would normally rely
on to operate. As described in the GUI functions chapter, a sub-decoder cannot display it’s GUI to the

(c) Ikalogic SAS 2019 53

Introduction to ScanaStudio scripts

user, but special GUI elements called “hidden elements” can be used to trick the sub-decoder into
behaving as if its GUI was displayed and configured by the user.

Figure 23: Sub-deocder interactions

Let’s look at things from a programming perspective: a high-level script must ensure that when a low
level scripts calls the function gui_get_value for a specific GUI ID, it gets a correct value. There are
two ways to do that:

1. Create hidden elements with the exact same ID as the one used in the sub-decoder’s GUI (the
method described above).

2. Use the same GUI IDs in the high level decoder and sub-decoder, when this is possible andmakes
sense.

Of course, it’s also possible to mix those two solutions. For example, the SDA and SCL channels for an
I2C decoder is a shared information between the high-level decoder and sub-decoder, so it would be
wise to give the channel selector GUI elements the same ID chosen by the sub-decoder; this way they
can share the same GUI element.

Next comes the most important part of the process, the pre-decoding: calling the sub-decoder and
making use of the decoded data. This is simply done by calling the pre-decode() function as de-
scribed below. This function will usually take some time to execute (depending on the quantity of
logic signals to be analyzed). Then, it will return the newly decoded data packets. Those packets are
called “decoder items” and are simply objects of the type dec_item_t as defined by this JavaScript
constructor:

1 //dev_item_t constructor

(c) Ikalogic SAS 2019 54

Introduction to ScanaStudio scripts

2 function dec_item_t(channel_index, start_sample_index, end_sample_index
, content)

3 {
4 this.channel_index = channel_index;
5 this.start_sample_index = start_sample_index;
6 this.end_sample_index = end_sample_index;
7 this.content = content;
8 }

As you may have recognized, this data type simply encapsulates all the information that the script
provides for ScanaStudio to draw the decoder items on the waveforms. Once you get hold of this array
of dec_item_t, you can very quickly work on your high level decoding without worrying about the
details of low level decoding. Another big advantage of this technique, is that your high-level decoder
benefits from all the evolutions and bug corrections that are made over the time to the low level
decoder. This has one downside though: youmay need - from time to time - to adjust your high level
decoder script if somemodifications aremade to the low level script that are not backward compatible
with older versions.

Please note that a sub-decoder may only create decoder items. Any attempts from a sub decoder to
add items to packet view or hex view will be silently ignored without generating errors or warnings.

Also when a sub-decoder adds content to a decoder item, only the first version of that content is taken
into consideration, e.g.:

1 ScanaStudio.dec_item_add_content("ACKNOWLEDGE"); //Only this line will
be considered when pre-decoding

2 ScanaStudio.dec_item_add_content("ACK"); //Will be ignored when pre-
decoding

3 ScanaStudio.dec_item_add_content("A"); //Will be ignored when pre-
decoding

A decoder script can detect if it’s called directly from ScanaStudio, or if it’s called by another script
using the function is_pre_decoding(). This can be used to adapt the output of a decoder to be
easily used by another script.

ScanaStudio.pre_decode(“dec_name”,resume)

Description: This function calls the on_decode_signals(resume) function in the decoder
dec_name

Parameters:

(c) Ikalogic SAS 2019 55

Introduction to ScanaStudio scripts

• “dec_name” : The name of the script where the on_decode_signals function should be called.
This namemust include the extension *.js, for example: “i2c.js”.

• resume : The resume parameter as described in the on_decode_signals documentation.

Return value: Returns an array of dec_item_twith the newly decoded packets.

Context: Protocol decoder.

Example

Here is an example of implementation of the pre_decode function that shows how simple a script
can get, provided that you use a sub-decoder to do all the complicated low level processing:

1 function on_decode_signals(resume)
2 {
3 var decoder_items = ScanaStudio.pre_decode("my_low_level_decoder.js",

resume);
4 for (i=0; i < decoder_items.length; i++)
5 {
6 //Interpret decoder_items[i] and create new decoder items with

your interpreted data
7 ScanaStudio.dec_item_new(decoder_items[i].channel_index,

decoder_items[i].start_sample_index,decoder_items[i].
end_sample_index);

8 var my_new_data = decoder_items[i].data + 1; //create new data
based on low level data

9 ScanaStudio.dec_item_set_data(my_new_data);
10 }
11 }

ScanaStudio.is_pre_decoding()

Description: This function returns true if the script’s on_decode_signals function is being called by
another script, i.e. using the pre_decode function.

Context: Protocol decoder

Implementing a sub-decoder in your decoder

In this section, we’re going to present a standard methodology that we recommend when one needs
to build a decoder based on another (sub) decoder. The process we recommend can be split in several
steps:

(c) Ikalogic SAS 2019 56

Introduction to ScanaStudio scripts

1. Start by copying the content of the on_draw_gui_decoder() function into your own script.

2. Create a on_decode_signals() function that simply displays the sub-decoder items without
any processing, e.g.:

1 function on_decode_signals(resume)
2 {
3
4 items = ScanaStudio.pre_decode("sm-bus.js",resume);
5 var i;
6 for (i = 0; i < items.length; i++)
7 {
8 ScanaStudio.dec_item_new(items[i].channel_index,items[i].

start_sample_index,items[i].end_sample_index);
9 ScanaStudio.dec_item_add_content(items[i].content);
10 }
11 }

3. Test the decoder with some arbitrary signals, and ensure signals are displayed correctly.
4. Start modifying the on_draw_gui_decoder() and on_decode_signals() functions to im-
plement your high-level decoder that processes the low-level decoder items. Whenmodifying
on_draw_gui_decoder(), ensure that each GUI item you remove is replaced by a “hidden”
GUI value (to ensure the low level decoder has access to all the information needed to operate
correctly).

(c) Ikalogic SAS 2019 57

Introduction to ScanaStudio scripts

Trigger sequences (FlexiTrig)

All Ikalogic logic analyzers manufactured a�er 2012 come with an IP (intellectual property) bloc called
“FlexiTrig”. This is a trigger engine that is unique of its kind, because it allows almost any logic sequence
to be described in order to generate a trigger conditionwhen such a sequence is detected. For example,
a non acknowledged I2C address call can be used to trigger a capture.

Although recent devices like SP209 series logic analyzers have very deep sampling depths, making this
feature less vital, it still can be very useful to generate such precise trigger to synchronize other lab
instruments. Indeed, SP209 series logic analyzers have TRIG-OUT SMA connectors that will generate a
trigger pulse when a trigger condition is detected by the FlexiTrig engine.

Under the hood, FlexiTrig’s trigger sequence works with what we call “trigger steps”. Each time the
logic signals match with a trigger step, the FlexiTrig engine advances to the next step. This operation
continues until the very last step is reached, which generates the actual trigger pulse.

Each trigger step is describedwith a text string, where each character represents a logic state according
to the following table:

Character Logic state or transition

0 Logic low level

1 Logic high level

R Rising edge

F Falling edge

X Don’t care (ignore channel)

For example, a rising edge transition on the second channel of a 4 channels logic analyzer, can be
described with this text string: "XXRX". Note that the rightmost character represents the first channel.

Important note: A step description may never contain more than one transition (like a Falling edge or
Rising edge). Adding a step with 2 or more edges will generates errors, since it’s physically impossible
to make 2 edges coincide at the same instant in time.

Here are some valid trigger step examples:

Trigger step text string Description in plain words

"001X" Low level on channels 3 and 4, high level on channel 2, and
don’t care on channel 1.

(c) Ikalogic SAS 2019 58

Introduction to ScanaStudio scripts

Trigger step text string Description in plain words

"1XXXXFXX" Falling edge on channel 3, while channel 9 is logic high. Other
channels are ignored.

The number of characters in the text string must be equal to the number of channels of a logic analyzer
device. Thus, it’s the script’s responsibility to retrieve thenumberof channels, andbuild a correct trigger
step string accordingly. The number of channels can be retrieved using the function ScanaStudio.
get_device_channels_count()which is described in the General functions chapter.

The time between two steps can be constrained using:

• A minimum time
• A maximum time
• A minimum andmaximum time

This e�ectively tells the logic analyzer device to only accept a trigger step match if it happens within
defined time limits. (This is essential for triggering on asynchronous protocol words like UART, CAN ,
1-Wire or LIN).

Consecutive edges of the same polarity

It is possible to build a trigger sequence with two consecutive edges of the same polarity on the same
channel.

One example application for this, is to trigger when a signal reaches a certain frequency:

Figure 24: test

In that particular case, we’re interested in measuring a signal period (T2), that is, the time between
two consecutive rising or falling edges, but the relation between a rising edge and the next falling edge
(T1) is not useful.

(c) Ikalogic SAS 2019 59

Introduction to ScanaStudio scripts

It’s important to understand that FlexiTrig IP translates 2 same polarity consecutive edges into 3 steps:

1. First edge
2. Implicitly added edge of opposite polarity
3. Second edge

If the logic level on the channels is di�erent between the first and the last edge, the (Implicitly) added
edge will have DONT CARE values. If the logic value is stable, it will be maintained in the added edge.

The example below describing how the Implicitly added edge deals with the other channels, the ones
without edges (the 3 MSB channels in that example).

For instance, if the script is creating the trigger sequence below:

1 01XR
2 11XR

It would be translated - inside the FlexiTrig system - into those 3 steps

1 01XR
2 X1XF <----- Implicitly added falling edge step
3 11XR

In practical terms, the following example simply means that the trigger should happen if there are two
consecutive rising edges on channel 0. The logic level on channel 2 must be stable at logic level 1, and
the logic level on channel 3must have the values 0 and 1 at the instant of the first and second rising edge
respectively. Channel 3’s value may be unstable between the two edges without any consequences on
the trigger sequence. Finally, channel 1 is DONT CARE (X) during the whole sequence, which means
that it’s value is ignored.

1 01XR
2 11XR

While this may work in many situations, sometimes, this may not be the required behavior. In this case,
it’s recommended to fully specify all the steps of a trigger sequence, without skipping any edge.

(c) Ikalogic SAS 2019 60

Introduction to ScanaStudio scripts

Entry point function

Like any other feature of ScanaStudio scripts, the trigger script work with entry point functions that
are described below:

• on_draw_gui_trigger() is called when ScanaStudio need to draw the trigger configuration
GUI

• on_eval_gui_trigger() is called when ScanaStudio need to evaluate the trigger configura-
tion GUI

• on_build_trigger() is calledwhenScanaStudio need to build or rebuild the trigger sequence
using that specific script.

ScanaStudio.flexitrig_append(“step_description”,t_min,t_max)

Description: This function appends a new trigger step described by "step_description" and con-
strained with the previous step by t_min and t_max.

Parameters:

• “step_description”: Text string describing the trigger step
• t_min : Minimum time between this step and the previous step expressed in seconds. For
example, if this parameter is set to 0.1, it mean 100ms. This parameter is ignored for the very first
appended step. set to -1 to ignore this constrain

• t_max : Maximum time between this step and the previous step expressed in seconds. This
parameter is ignored for the very first appended step. set to -1 to ignore this constrain

Context: Trigger

ScanaStudio.flexitrig_print_steps()

Description: This function is simply used for diagnosting and debugging of your trigger steps builder
script. Calling this function will simply display a list describing all the trigger steps that have been
created by your script, and as they were understood by ScanaStudio.

Steps will be displayed in ScanaStudio’s console.

Context: Trigger

Example trigger sequence generator script

The script below shows how to build a trigger sequence in a way that the logic analyzer triggers when a
threshold frequency is reached.

(c) Ikalogic SAS 2019 61

Introduction to ScanaStudio scripts

Note: A trigger builder script need also to implement protocol decoding features to be used by ScanaS-
tudio. Those functions are not shown in this example for the sake of clarity, but let’s assume it’s part of a
more complete script called “My protocol”. Also, prior to using a script based trigger, the corresponding
protocol decoder must be added to the workspace. For example, to use the UART trigger, onemust
first add (and configure) UART trigger in the ScanaStudio workspace.

1 //Trigger sequence GUI
2 function on_draw_gui_trigger()
3 {
4 ScanaStudio.gui_add_ch_selector("f_channel","Channel","");
5 ScanaStudio.gui_add_info_label("Trigger will occure when the

frequency is above the threshold");
6 ScanaStudio.gui_add_engineering_form_input_box("f_th","Threshold

frequency",1,20e6,10e3,"Hz");
7 }
8
9 function on_build_trigger()
10 {
11 var f_channel = ScanaStudio.gui_get_value("f_channel");
12 var f_th = ScanaStudio.gui_get_value("f_th");
13
14 ScanaStudio.flexitrig_append(build_trigger_step_string(f_channel)

,-1,-1);
15 ScanaStudio.flexitrig_append(build_trigger_step_string(f_channel)

,-1,1/f_th);
16 ScanaStudio.flexitrig_print_steps();
17 }
18
19 function build_trigger_step_string(channel)
20 {
21 var i;
22 var ret = "";
23 for (i = 0; i < ScanaStudio.get_device_channels_count(); i++)
24 {
25 if (i == channel)
26 {
27 ret = "R" + ret;
28 }
29 else {
30 ret = "X" + ret;
31 }

(c) Ikalogic SAS 2019 62

Introduction to ScanaStudio scripts

32 }
33 return ret;
34 }

Now, we can use this script (called “My protocol” in this example) in ScanaStudio and add this trigger
sequence to a workspace as in the image below:

Figure 25: adding trigger to workspace

When you click onOK button, the function on_build_trigger is called and the trigger sequence is
e�ectively built. Since the script implements a call to ScanaStudio.flexitrig_print_steps(),
the following printout should be visible in ScanaStudio log (console):

1 [My Protocol Trigger] ** Trigger steps printout, total 2 steps
2 [My Protocol Trigger] Step index, Description, Tmin, Tmax
3 [My Protocol Trigger] Step (1): XXXR N/A N/A
4 [My Protocol Trigger] Step (2): XXXR 1.00e-04 N/A

This simply shows the two trigger steps created by the script. The two steps define a Rising edge on the
first channel (channel 0). The first step has no any time constraints on Tmin or Tmax (which is normal,
since it’s the first step), the second trigger step though, defines a 0.1 ms maximum time constraint

(c) Ikalogic SAS 2019 63

Introduction to ScanaStudio scripts

between this step and the previous step. A maximum time of 0.1 ms means a minimum frequency of 10
KHz.

(c) Ikalogic SAS 2019 64

Introduction to ScanaStudio scripts

Signal builder

This chapter focuses on the script functions related to building logic signals. Building signals is used
for two di�erent purposes:

1. Building demonstration signals (when no device is connected). Demonstration signals are very
useful when working on a protocol decoder, and they allow specific and repeatable signals to be
generated and decoded without having to rely on specific, hard to find or costly hardware.

2. Building logic patterns to be generated via a logic analyzer devices that support logic pattern
generator feature (like the SQ series logic analyzers). This can be useful if one needs to generate
special tests patters and study how a specific device reacts to those patterns. It can also be useful
to generate serial communication patterns, like a group of UART words or an I2C packet.

Important note: Since signals are built, and then generated at a later time, it is currently impossible
the dynamically change the generated patterns on the fly. To achieve such results, one would need to
use another class of devices, that can run a firmware, like the Arduino platform.

There are twomain approaches when it comes to logic signals builder scripts. The first is to build the
signals from scratch, specifying the high and low levels and the number of sample. This is the simplest
approach, but it can become tedious if you wish to generate more sophisticated logic patters. The
second approach is to use “builder objects” that are exposed by some scripts. For example, the CAN
bus protocol script exposes a builder object that encapsulate all the complexities of CAN bus signal
building, like CRC calculations and bit stu�ing.

Finally, please note that the signal builder script only focuses on building the signals. Device configura-
tion (like which channel is set as input or output), Logic level (3.3V or 5V), and drive type (push-pull or
open drain) can only be set by the user in ScanaStudio internal.

Entry point functions

As described above, two possible use cases exist when it comes to signal builder scripts. The first is
when a user adds a protocol script to a demo workspace (no actual device connected) and hits the
“run” button. At this moment, ScanaStudio will generate arbitrary signals, and then, will check if the
protocol script attached to this workspace has a on_build_demo_signals() functions and call it.

The second use case, is when a user want to explicitly run the signal builder, which is only possible for
devices that support logic pattern generation.

1 function on_build_signals()
2 {

(c) Ikalogic SAS 2019 65

Introduction to ScanaStudio scripts

3 // function called when ScanaStudio needs build signals using this
script

4 }
5
6 function on_build_demo_signals()
7 {
8 // Function called when ScanaStudio needs to build demo signals
9 }

Sampling rate and devicememory

When building signals, at the most basic level, we’re appending samples, one a�er the other, in a long
memory bu�er. Those samples are later played back (generated) to output electrical signals. The
sampling frequency (the speed at which those samples are played) will define the time of each sample.
The total number of samples, will define the length of the pattern. If the user decides to loop this
pattern, then the total number of samples will determine the periodicity at which the pattern repeats
itself. Finally, one has also to take into consideration that the device that will generate the signals may
have limited embeddedmemory.

All those parameters are very important and need to be taken into consideration. For that reasons, the
following functions were created.

ScanaStudio.builder_get_sample_rate()

Description: This function returns the sampling rate used to playback (generate) the samples.

Context: Signal builder

ScanaStudio.builder_get_maximum_samples_count()

Description: This function returns the maximum number of samples that can be stored in a device’s
internal memory. If the device has nomemory limitation (i.e. streaming the signals directly from the
computer), this function will return -1 (at the time this document is written, there are no devices with
such unlimited memory).

Context: Signal builder

ScanaStudio.builder_get_samples_acc(channel_index)

Description: This function simply return the total number of samples appended for a specific channel.
This function is usually used to stop the script a�er a channel’s memory become full.

(c) Ikalogic SAS 2019 66

Introduction to ScanaStudio scripts

Parameters:

• channel_index: the 0-based index of the concerned channel.

Context: Signal builder

Basic signal builder functions

ScanaStudio.builder_add_samples(channel_index,logic_level,samples_count)

Description: This function appends samples to a channel

Parameters:

• channel_index: 0-based index of the channel to which samples should be appended.
• logic_level: set to 0 to append low level samples, 1 for high level samples.
• samples_count: the total number of samples to append (should be greater than 0)

Return value: Returns

Context: Signal builder

ScanaStudio.builder_add_cycles(channel_index,duty_cycle,samples_per_cycle,cycles_count)

Description: This function appends a cycle (one period of a signal) to a channel

Parameters:

• channel_index: 0-based index of the channel to which cycles should be appended.
• duty_cycle: As the name implies, this is a fraction that represents the ratio between the high and
low level samples in that cycle.

• samples_per_cycle: The total number of samples in that cycle
• cycles_count: The total number of cycles

Example

The code below will create 10 cycles, with a 50% duty cycle on channel 4 (remember, channel index is
0 based). Each cycle will have 50 samples, 25 of themwith a high level, and 25 with a low level.

1 ScanaStudio.builder_add_cycles(3,0.5,50,10);

Context: Signal builder

(c) Ikalogic SAS 2019 67

Introduction to ScanaStudio scripts

Implementing a builder object

It’s o�en a good idea to group all the “helper” functions used to build signals for a specific proto-
col or application in a JavaScript object called ScanaStudio.BuilderObject. This has twomain
advantages:

1. Your script will be neatly organized: all signal building functions will be grouped in one place
2. Your script will be useable by other scripts since it exposes such a “signal builder” object.

This builder object has to have his exact name (ScanaStudio.BuilderObject), and thus, theremay
only be one builder object in a given script. Here is an example implementation of such a builder
object:

1
2 function on_build_signals()
3 {
4 // function called when ScanaStudio needs build signals using this

script
5 var my_builder = ScanaStudio.BuilderObject;
6
7 mu_builder.configure(1,115200);
8 my_builder.generate_one_byte(10);
9 my_builder.generate_one_byte(20);
10 my_builder.generate_one_byte(30);
11 }
12
13 ScanaStudio.BuilderObject = {
14 my_ch: 0,
15 my_baud : 9600,
16 generate_one_byte : function(data_byte)
17 {
18 // Build the data byte accodring to your protocol
19 // ex: ScanaStudio.builder_add_samples(my_ch,1,20)
20 },
21 configure: function(channel,baud)
22 {
23 this.my_ch = channel;
24 this.my_baud = baud;
25 }
26 };

Although this script does not generate anymeaningful data, its simplistic approach will help you to

(c) Ikalogic SAS 2019 68

Introduction to ScanaStudio scripts

understand the usage of the builder object. As you can see, all variables and functions related to
signal building are grouped in one object. The ability to instantiate several objects (like the object
my_builder) gives a lot of flexibility and allows easy code recycling. For instance, another builder
object may be instantiated in the on_build_demo_signals() entry point function.

Using a builder object from another script

Making use of an existing builder object from another script implies calling the function ScanaStudio
.load_builder_object(script) to load the builder object. Then, this object can be used as any
other JavaScript object.

Let’s assume we want to use the builder from the previous example in another script. Let’s assume the
previous example belongs to a script called “my_script.js”:

1 function on_build_signals()
2 {
3 // function called when ScanaStudio needs build signals using this

script
4 var my_builder = ScanaStudio.load_builder_object("my_script.js");
5 my_builder.my_ch = 1;
6 my_builder.my_baud = 115200;
7 my_builder.generate_one_byte(10);
8 my_builder.generate_one_byte(20);
9 my_builder.generate_one_byte(30);
10 }

As you can see, we only had to change a single line (compared to the previous example), which is the
line that loads the builder object. Past this point, the my_builder object behaves exactly as if it was
included in your script. As a matter of fact, behind the hood, ScanaStudio will actually appends the
builder object to the end of your script before it’s executed.

One big advantage of this method is that youmay load di�erent builder objects from di�erent files,
hence building very sophisticated signals using few, simple, easy to read lines of code.

Putting it all together

Example 1

Suppose we want to write a script that builds a 25% duty cycle square wave, on channel 2 (channel
index 1), with a frequency of 100KHz. The example code below shows how this could be achieved.

(c) Ikalogic SAS 2019 69

Introduction to ScanaStudio scripts

1 function on_build_signals()
2 {
3 var samples_per_cycle = ScanaStudio.builder_get_sample_rate() / 100e3

;
4 var maximum_cycles_count = Math.floor(ScanaStudio.

builder_get_maximum_samples_count() / samples_per_cycle);
5 ScanaStudio.builder_add_cycles(1,0.25,samples_per_cycle,

maximum_cycles_count);
6 }

Example 2

This overly simplified example shows how BuilderObject can be used to encapsulate the functions
related to servomotor signal generation. The example belowmay needmore development to do a
good job controlling a servo motor, but we kept it simple for the purpose of making it easier to follow.

Please note that the ScanaStudio.BuilderObject could be replaced by any other object name,
it would perfectly work for this example, but it would not allow it to be used by other scripts via the
load_builder_object(script.js) function. For this reason, it’s recommend to use this exact
naming convention for the BuilderObject.

1 function on_build_signals()
2 {
3 var servo_signal_builder = ScanaStudio.BuilderObject;
4 servo_signal_builder.set_channel(2);
5 servo_signal_builder.generate_one_cycle(-90);
6 servo_signal_builder.generate_one_cycle(0);
7 servo_signal_builder.generate_one_cycle(90);
8 }
9
10 ScanaStudio.BuilderObject = {
11 servo_ch: 0,
12 min_pulse_ms: 1,
13 max_pulse_ms: 2,
14 min_angle: -90,
15 max_angle: +90,
16
17 set_channel : function (ch)
18 {
19 this.servo_ch = ch;

(c) Ikalogic SAS 2019 70

Introduction to ScanaStudio scripts

20 },
21 generate_one_cycle : function(angle)
22 {
23 var samples_per_20ms = (20e-3) * ScanaStudio.

builder_get_sample_rate();
24 var angle_ratio = ((angle-this.min_angle)/(this.max_angle -

this.min_angle))
25 var pulse_width_ms = this.min_pulse_ms + (angle_ratio * (this.

max_pulse_ms - this.min_pulse_ms));
26 var duty_cycle = pulse_width_ms / 20;
27 ScanaStudio.builder_add_cycle(this.servo_ch,duty_cycle,

samples_per_20ms);
28 }
29 };

(c) Ikalogic SAS 2019 71

Introduction to ScanaStudio scripts

File system functions

This chapter is dedicated to all file system related features, that is, functions that allows a script to
access files on the host computer either for writing or reading of data. Please note for security reason,
a script cannot read or write to/from any file: Only a file path that have been specified by the user in
the GUI using file system GUI items can be accessed. For instance, to be able to access a file from a
script, there must be one of those two GUI elements:

1 ScanaStudio.gui_add_file_save(id,...)
2 ScanaStudio.gui_add_file_load(id,...)

Please refer to the GUI functions chapter for more details about the usage of those two functions. It’s
worth reminding though that the id parameter of this function is what is needed to access the file set
by the user, as it will be explained in details in this chapter. (This confirms that at no time, the scripts
gets to know anything about the host’s file system or the actual path to the file).

To access a file for reading, first, you need to add a GUI elements in a relevant GUI (like the signal builder
GUI). Below is an example:

1 ScanaStudio.gui_add_file_load("my_file_id", "Select CSV file", "*.csv")
;

which should create a GUI element that looks like this:

Figure 26: script-import-csv-file

Please note that the text string "my_file_id"must be a unique ID in your script’s GUI, and is used to
open a file.

ScanaStudio.file_system_open(“file_id”,“mode”);

Description: This function open a file before being able to read or write to it.

Parameters:

• “file_id”: the unique text string ID of the GUI elements used to define the file path.

(c) Ikalogic SAS 2019 72

Introduction to ScanaStudio scripts

• “mode”: a single character text string that defines the access mode, according the the table
below

Mode Description

“r” Read only

“w” Write only (Deletes existing file content before writing)

“a” Append (Preserves existing file content)

Return value: In case of error (unable to open the file) this function returns -1. otherwise, this function
returns the file handle that can later be used for writing and reading.

Context: Global context

ScanaStudio.file_system_close(file_handle)

Description: This function is used to close a file.

Parameters:

• file_handle: The handle that was returned by the function ScanaStudio.file_system_open
().

Return value: None.

Context: Global context

ScanaStudio.file_system_read_binary(file_handle)

Description: This function read the content of a file and return the content in binary format

Parameters:

• file_handle: The handle that was returned by the function ScanaStudio.file_system_open
().

Return value: Returns an array of integers, each integer represent a byte the file.

Context: Global context

ScanaStudio.file_system_read_text(file_handle,“encoding”)

Description: This function is used to read the content of a file in text format.

(c) Ikalogic SAS 2019 73

Introduction to ScanaStudio scripts

Parameters:

• file_handle: The handle that was returned by the function ScanaStudio.file_system_open
().

• “encoding”: A text string that defines the encoding used to read the file in text format, e.g. “UTF-
16”. The full list of supported formats is:
– Big5
– Big5-HKSCS
– CP949
– EUC-JP
– EUC-KR
– GB18030
– HP-ROMAN8
– IBM 850
– IBM 866
– IBM 874
– ISO 2022-JP
– ISO 8859-1 to 10
– ISO 8859-13 to 16
– Iscii-Bng, Dev, Gjr, Knd, Mlm, Ori, Pnj, Tlg, and Tml
– KOI8-R
– KOI8-U
– Macintosh
– Shi�-JIS
– TIS-620
– TSCII
– UTF-8
– UTF-16
– UTF-16BE
– UTF-16LE
– UTF-32
– UTF-32BE
– UTF-32LE
– Windows-1250 to 1258

Return value: Returns a text string containing the content of the file

Context: Global context

(c) Ikalogic SAS 2019 74

Introduction to ScanaStudio scripts

ScanaStudio.file_system_write_binary(file_handle,data_array)

Description: This function writes binary data to a file (i.e. an array of bytes)

Parameters:

• file_handle: the handle that was returned by the function ScanaStudio.file_system_open
().

• data_array: An array containing the bytes that should be written to the file.

Return value: None.

Context: Global context

ScanaStudio.file_system_write_text(file_handle, “text”, “encoding”)

Description: This function writes text to a file.

Parameters:

• file_handle: the handle that was returned by the function ScanaStudio.file_system_open
().

• “text”: the text to be written to the file
• “encoding”: A text string thatdefines theencodingused towrite to the file in text format, e.g. “UTF-
16”. The full list of supported formats is:
– Big5
– Big5-HKSCS
– CP949
– EUC-JP
– EUC-KR
– GB18030
– HP-ROMAN8
– IBM 850
– IBM 866
– IBM 874
– ISO 2022-JP
– ISO 8859-1 to 10
– ISO 8859-13 to 16
– Iscii-Bng, Dev, Gjr, Knd, Mlm, Ori, Pnj, Tlg, and Tml
– KOI8-R
– KOI8-U
– Macintosh

(c) Ikalogic SAS 2019 75

Introduction to ScanaStudio scripts

– Shi�-JIS
– TIS-620
– TSCII
– UTF-8
– UTF-16
– UTF-16BE
– UTF-16LE
– UTF-32
– UTF-32BE
– UTF-32LE
– Windows-1250 to 1258

Return value: Returns

Context: Global context

Full example

A good example that demonstrates the file system features is the CSV import script, which takes a CSV
file containing some samples, and builds logic signals from those samples. Those samples can be
used to generate signals using a compatible signal generator (like the SQ series logic analyzer devices).
Below is simplified version of the script:

1
2 var ENCODING = "UTF-8";
3
4 //Signal builder GUI
5 function on_draw_gui_signal_builder()
6 {
7 ScanaStudio.gui_add_file_load("csv_file","Select CSV file","*.csv");
8 ScanaStudio.gui_add_text_input("sep","Column separator",";");
9 ScanaStudio.gui_add_new_tab("CSV Mapping",false);
10 var ch;
11 for (ch = 0; ch < ScanaStudio.get_device_channels_count(); ch++)
12 {
13 ScanaStudio.gui_add_combo_box("col_ch"+ch,"CH " + (ch+1).toString

());
14 ScanaStudio.gui_add_item_to_combo_box("Do not import",false);
15 for (col = 0; col <= ScanaStudio.get_device_channels_count(); col

++)

(c) Ikalogic SAS 2019 76

Introduction to ScanaStudio scripts

16 {
17 ScanaStudio.gui_add_item_to_combo_box("Column "+(col).toString

(), ((col == (ch+1))?true:false));
18 }
19 }
20 ScanaStudio.gui_end_tab();
21 }
22
23
24 //Function called to build siganls (to be generate by capable device)
25 function on_build_signals()
26 {
27 //Use the function below to get the number of samples to be built
28 var samples_to_build = ScanaStudio.builder_get_maximum_samples_count

();
29 var sample_rate = ScanaStudio.builder_get_sample_rate();
30 var max_time = samples_to_build / sample_rate;
31 var file = ScanaStudio.file_system_open("csv_file","r");
32 if (file < 0) //Is the file successfully opened?
33 {
34 return;
35 }
36 var separator = ScanaStudio.gui_get_value("sep");
37 var data = ScanaStudio.file_system_read_text(file,ENCODING);;
38 var lines = data.match(/[^\r\n]+/g);
39 ScanaStudio.file_system_close(file);
40 var ch_map = [];
41 var ch;
42 for (ch = 0; ch < ScanaStudio.get_device_channels_count(); ch++)
43 {
44 ch_map.push(ScanaStudio.gui_get_value("col_ch"+ch)-1);
45 }
46 var samples_acc = 0;
47 var i = 0;
48 for (i=0; i < lines.length; i++)
49 {
50 var cols = lines[i].split(separator);
51 var new_line = "";
52 //process one line:
53 samples_acc += 1;
54 if (samples_acc > samples_to_build)
55 {
56 break;

(c) Ikalogic SAS 2019 77

Introduction to ScanaStudio scripts

57 }
58 for (ch = 0; ch < ScanaStudio.get_device_channels_count(); ch++)
59 {
60 if (ch_map[ch] != -1)
61 {
62 sample_val = parseInt(cols[ch_map[ch]]);
63 ScanaStudio.builder_add_samples(ch,sample_val,1);
64 }
65 }
66 }
67 }

(c) Ikalogic SAS 2019 78

Introduction to ScanaStudio scripts

General functions

This chapter is dedicated to general purpose functions that are used for general tasks like:

• Script debugging
• Progress reporting (for slow script operations)

Script renaming

Itmay be of interest to rename an instance of a script to amore unique name. For example, aworkspace
may have several instances of theUARTprotocol decoder scripts, each one targeting a di�erent channel.
If they all keep their default name, that is: “UART”, then it’s impossible to knowwhich decoder is for
which channel. For that particular reason, a script renaming function is provided so that at any given
moment, a script can rename itself to a more “unique” name.

If we keep the example of the multiple UART decoder scripts, one solution would be to call the script
renaming function in the GUI evaluation function, which is the moment where we know exactly what
channel is targeted by that script.

The di�erent UART decoders could then be renamed:

• UART on CH1
• UART on CH2
• UART on CH3
• etc. . .

The script renaming function is presented below

ScanaStudio.set_script_instance_name(“script_name”)

Description: This function renames the instance of the script. This temporary name changing does not
a�ect the hard coded name of the script which is defined via meta-information tags (see chapter 2).

Parameters:

• “script_name”: The new script of the name. This name will totally replace the script

Context: Global

Progress reporting

ScanaStudio.report_progress(progress_percentage)

This function provides the user with a progress indication for slow operations (like decoding a very big
amount of logic signals). This function should be called periodically (as o�en as deemed necessary).

(c) Ikalogic SAS 2019 79

Introduction to ScanaStudio scripts

Calling the report_progress() function multiple times with the same progress_percentage
value will have no e�ect (only a progress_percentage value di�erent that previous one will be
considered). It is highly recommend to implement this function in your script, for each and every
entry-point function.

Example:

1 function on_decode_signals(resume)
2 {
3 for (int i = 0; i < total_samples_count; i++)
4 {
5 ScanaStudio.report_progress(i*100/total_samples_count);
6
7 /*
8 Your slow, time consuming decoding code goes here
9 */
10 }
11 }

Context : Global

Console messages

ScanaStudio.console_info_msg(“msg”,sample)

Description: This function prints themessage msg in a console box in ScanaStudio. sample parameter
is optional. If sample is defined, the console message will be displayed as hyperlink linked to the
provided sample number. If the user clicks on that hyperlink, ScanaStudio’s waveformwill center on
that specific sample. This function is intended for debugging phase of a script, that being said, it may
be used to display messages to the script’s end user if it does not fit elsewhere.

Example:

1 ScanaStudio.console_info_msg("A simple message");
2 ScanaStudio.console_info_msg("My variable =" + variable);
3 ScanaStudio.console_info_msg("A simple message linked to a sample",

50000);

Context : Global

(c) Ikalogic SAS 2019 80

Introduction to ScanaStudio scripts

ScanaStudio.console_warning_msg(“msg”,sample)

Description: This function is identical in operation to ScanaStudio.console_info_msg(). The
only di�erence is the waymessages will be presented to the user as a “warning messages”.

Context : Global

ScanaStudio.console_error_msg(“msg”,sample)

Description: This function is identical in operation to ScanaStudio.console_info_msg(). The
only di�erence is the waymessages will be presented to the user as an “error messages”.

Context : Global

Formatting

ScanaStudio.engineering_notation(number,digits)

Description: This function formats a number in engineering notation. For example, ScanaStudio.
engineering_notation("1500",3)would return “1.50 k”

Parameters:

• number: The number to be formatted
• digits: The number of digits (Please note that the minimum allowed number of digits is 3).

Return value: Returns text containing formatted number along with engineering prefix.

Context: Global

(c) Ikalogic SAS 2019 81

Introduction to ScanaStudio scripts

Protocol decoder scriptingmethodology

In this chapter, we’ll present a methodology that we recommend when writing a script that decodes a
specific protocol.

Please note that this is just a recommendation, and we believe this to be an e�ective way of quickly
developing protocol decoder scripts. That being said, depending on the specific protocol you’re
attempting to write, or the tasks carried by the script, this may not be the best approach.

Obviously, it’s mandatory to fully understand how the protocol works and obtain all necessary docu-
mentation that describes all timings, waveform, packetization, CRC calculations or whatever specificity
for that protocol.

First, we start by including the mandatory entry point function on_decode_signals and
on_draw_gui_decoder so that ScanaStudio can detect this script as a valid signal decoder
script. It’s okay if those functions are empty at that moment.

According to thismethodology, we start bywriting thedecoderGUI function (on_draw_gui_decoder).
This is usually a simple straight forward task. One can easily test how the GUI looks like by adding the
script to a ScanaStudio workspace.

Thenext step is towrite the signal builder object for that protocol (theScanaStudio.BuilderObject
object). The builder object should be a fully independent piece of code, so that it can be included in
any other script.

Once the ScanaStudio.BuilderObject is written, we can start testing it by writing the demo signal
generation function: on_build_demo_signals.

As soon as this function is implemented, we can add this script to a demo ScanaStudio workspace (no
anydeviceconnected)andhit the startbutton: ScanaStudiowill launch theon_build_demo_signals
function and generate the demo signals.

At this point, the design loop described in the image below can start:

(c) Ikalogic SAS 2019 82

Introduction to ScanaStudio scripts

Figure 27: script writing methodology

This design loop will help you to quickly converge your script into a fully functional and tested protocol
decoder script. You start by writing/testing/debugging the BuilderObject for a particular configuration
(that was set in the script GUI), then, the on_decode_signals can be written and tested. Sometimes,
one may find bugs in the BuilderObject while testing the signal decoder and vice versa.

In other words, the BuilderObject helps you to debug the signal decoder, and the signal decoder helps
you to debug the BuilderObject.

(c) Ikalogic SAS 2019 83

	Introduction to ScanaStudio scripts
	A bit of history
	Scope of this document
	What can a ScanaStudio script do?
	Principle of operation
	Setting up coding environment

	Architecture of a script
	Meta-information
	Entry points functions
	Anatomy of a simple script
	Building the GUI
	Decoding the signals
	Putting the finishing touches

	GUI related functions
	GUI entry-point functions
	GUI construction
	ScanaStudio.gui_add_ch_selector(``id'',``caption'',``new_channel_name'')
	ScanaStudio.gui_add_text_input(``id'',``caption'',``default_value'')
	ScanaStudio.gui_add_baud_selector(``id'',``caption'',default_value)
	ScanaStudio.gui_add_check_box(``id'',``caption'',is_checked)
	ScanaStudio.gui_add_combo_box(``id'',``caption'')
	ScanaStudio.gui_add_item_to_combo_box(``item_txt'',is_selected)
	ScanaStudio.gui_add_engineering_form_input_box(``id'', ``caption'', min_value, max_value, default_value, ``unit'')
	ScanaStudio.gui_add_info_label(``text'')
	ScanaStudio.gui_add_separator(``title'')

	File system GUI elements
	ScanaStudio.gui_add_file_save(``id'',``caption'',``extension'')
	ScanaStudio.gui_add_file_load(``id'',``caption'',``extension'')

	Hidden GUI elements
	ScanaStudio.gui_add_hidden_field(``id'',``value'')
	ScanaStudio.gui_set_hidden_field(``id'',``value'')

	Grouping GUI elements in tabs
	ScanaStudio.gui_add_new_tab(``caption'',is_expanded)
	ScanaStudio.gui_end_tab()

	Selectable containers
	ScanaStudio.gui_add_new_selectable_containers_group(``id'',``caption'')
	ScanaStudio.gui_end_selectable_containers_group()
	ScanaStudio.gui_add_new_container(``caption'',is_selected)
	ScanaStudio.gui_end_container()

	GUI evaluation and validation
	GUI data retrieval
	ScanaStudio.gui_get_value(``id'')

	Complete example

	Protocol decoding
	Logic signals decoding entry-point function
	More about logic signals in ScanaStudio
	Samples, time, and sampling rate
	ScanaStudio.get_capture_sample_rate()

	Browsing through logic signals
	ScanaStudio.trs_reset(channel_index)
	ScanaStudio.trs_get_before(channel_index,target_sample)
	ScanaStudio.trs_get_next(channel_index)
	ScanaStudio.trs_get_previous(channel_index)
	ScanaStudio.trs_is_not_last(channel_index)
	get_available_samples(channel_index)

	Using the bit sampler feature
	ScanaStudio.bit_sampler_init(channel_index,start_sample_index,samples_increment)
	ScanaStudio.bit_sampler_next(channel_index)

	Adding decoder items
	ScanaStudio.dec_item_new(channel_index,start_sample,end_sample);
	ScanaStudio.dec_item_add_content(``content'');
	ScanaStudio.dec_item_add_sample_point(sample_index,``drawing'');
	ScanaStudio.dec_item_emphasize_error()
	ScanaStudio.dec_item_emphasize_warning()
	ScanaStudio.dec_item_emphasize_success()
	ScanaStudio.dec_item_end()

	Packet view
	ScanaStudio.packet_view_add_packet(root, ch, start_sample, end_sample, ``title'', ``content'', ``title_bg_html_color'', ``content_bg_html_color'')

	Hex View
	ScanaStudio.hex_view_add_byte(channel_index,start_sample,end_sample,data_byte)

	Colors
	ScanaStudio.get_channel_color(channel_index)

	Sub-decoder scripts
	ScanaStudio.pre_decode(``dec_name'',resume)
	ScanaStudio.is_pre_decoding()

	Implementing a sub-decoder in your decoder

	Trigger sequences (FlexiTrig)
	Consecutive edges of the same polarity
	Entry point function
	ScanaStudio.flexitrig_append(``step_description'',t_min,t_max)
	ScanaStudio.flexitrig_print_steps()

	Example trigger sequence generator script

	Signal builder
	Entry point functions
	Sampling rate and device memory
	ScanaStudio.builder_get_sample_rate()
	ScanaStudio.builder_get_maximum_samples_count()
	ScanaStudio.builder_get_samples_acc(channel_index)

	Basic signal builder functions
	ScanaStudio.builder_add_samples(channel_index,logic_level,samples_count)
	ScanaStudio.builder_add_cycles(channel_index,duty_cycle,samples_per_cycle,cycles_count)

	Implementing a builder object
	Using a builder object from another script
	Putting it all together

	File system functions
	ScanaStudio.file_system_open(``file_id'',``mode'');
	ScanaStudio.file_system_close(file_handle)
	ScanaStudio.file_system_read_binary(file_handle)
	ScanaStudio.file_system_read_text(file_handle,``encoding'')
	ScanaStudio.file_system_write_binary(file_handle,data_array)
	ScanaStudio.file_system_write_text(file_handle, ``text'', ``encoding'')

	Full example

	General functions
	Script renaming
	ScanaStudio.set_script_instance_name(``script_name'')

	Progress reporting
	ScanaStudio.report_progress(progress_percentage)

	Console messages
	ScanaStudio.console_info_msg(``msg'',sample)
	ScanaStudio.console_warning_msg(``msg'',sample)
	ScanaStudio.console_error_msg(``msg'',sample)

	Formatting
	ScanaStudio.engineering_notation(number,digits)

	Protocol decoder scripting methodology

